Bo Zhang	
732-322-3332 • bo.zhang@rutgers.edu • github.com/Zhang690683220	
EDUCATION	
Rutgers, The State University of New Jersey, Rutgers Discovery Informatics Institute	New Brunswick, NJ
PhD, Computer Sciences, Advised by Manish Parashar, GPA: 3.94/4.00	Sep 2018 - Present
Beijing University of Posts and Telecommunications, School of Information and Communication	Beijing, China
B.E, Telecommunication Engineering, Advised by Hongyan Cui, GPA: 85.28/100	Sep 2014 - Jun 2018
Three times University Fellowship Recipient	
RESEARCH EXPERIENCE	
Performance Portable Programming Framework for Coupling Scientific Workflow	New Brunswick, NJ
(This work will land in C++ 23)	
Rutgers Discovery Informatics Institute (Co-op with Sandia National Lab) Graduate Researcher	May 2020 – Present
 Integrated Resilient Dataspaces into Kokkos ecosystem. 	
Compared the performance of staging-based coupling with HDF5 and CPP IO.	
Enabled loose coupling for scientific applications for Kokkos.	
Extended PGAS programming model to workflow level.	
> Designed the architecture of data staging system to enable one-side data redistribution between applicati	ons.
Added PGAS-style distributed memory support for Kokkos.	
Data Compression and I/O Reduction for In-Situ Workflow in Scientific Computing	New Brunswick, NJ
Rutgers Discovery Informatics Institute Graduate Researcher M	Mar 2019 – Aug 2020
Investigated the use cases for several current popular scientific compression algorithms.	
Proposed three in-situ compression paradigms to reduce data staging IO bottleneck.	
 Integrated ZFP into Dataspaces library. 	
 Evaluated the performance of compression- integrated IO for coupled workflow. 	
Big Data Security Control based on Block Chain	Beijing, China
State Key Laboratory of Networking and Switching Technology Undergraduate Researcher	Sep 2017 - Jun 2018
> Analyzed the demand for integrating data transfer with blockchain network.	
Created a three-layer network model for tracing data transfer based on blockchain network.	

- \geq Designed the structure of transaction record.
- ≻ Traced data transfer flow based on Hyperledger Platform.

SKILLS

Programming Languages: Bash, C/C++, MPI, Python

Libraries: HDF5, VTK, ZFP, ADIOS, OpenSHMEM

DevOp: Slrum, Imod

HPC Platform: Caliburn, Amarel at Rutgers University, Frontera at TACC

Languages: English, Chinese

PUBLICATION

 \triangleright Cui H., Zhang B., Chen Y., Yu T., Xia Z., Liu Y. (2019) SDN-Based Optimization Model of Virtual Machine Live Migration Over Layer 2 Networks. In: Bhatia S., Tiwari S., Mishra K., Trivedi M. (eds) Advances in Computer Communication and Computational Sciences. Advances in Intelligent Systems and Computing, vol 760. Springer, Singapore

LEADERSHIP AND TEAMWORK

Rutgers, The State University of New Jersey, Department of Computer Science **Teaching Assistant**

- Supervised Computer Architecture to class of 40 undergraduate students in weekly recitation class. \geq
- \triangleright Prepared course material including lectures, exams and practice problems.

New Brunswick, NJ Sep 2018 - May 2020