Student: Matthew Paolella, University of Rhode Island mpaolell@uri.edu, 267-615-6502 Researcher: Dr. Fang Wang, University of Rhode Island <u>fangwang@uri.edu</u>, 401-874-4243

04/19/2024



#### Fluorine plays almost no role in biosphere

There are about 4700 naturally occurring organohalogen compounds



G. W. Gribble, J. Chem. Educ. 2004, 81, 1441; G. W. Gribble, Naturally Occurring Organohalogen Compounds-A Comprehensive Update 2010, 1; M. C. Walker, M. C. Y. Chang, Chem. Soc. Rev. 2014, 43, 6527; L. Wang, X. Zhou, M. Fredimoses, S. Liao, Y. Liu, RSC Advances 2014, 4, 57350. K. K. J. Chan, D. O'Hagan, in Methods Enzymol., 516, Academic Press, 2012, 219.

#### Fluorine is commonly used in bioactive molecules

To date, 20% of drugs and 30% of agrochemicals contain fluorine.



C. Ni, J. Hu, Synlett 2011, 770-782, G. K. S. Prakash, F. Wang, Chimica Oggi, 2012, 30, No. 5.

## Fluorine-containing moieties can be used to mimic other functional groups

| substituent                                       | electronegativity                                                                                                                                  | space filling model        |  |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
| –CF <sub>2</sub> H (difluoromethyl)               | 3.00                                                                                                                                               |                            |  |  |
| –OH (hydroxyl)                                    | 3.51                                                                                                                                               |                            |  |  |
| HO<br>HO<br>H <sub>2</sub> N CO <sub>2</sub> H    | $\Rightarrow \qquad \qquad$ | <b>`</b> СО <sub>2</sub> Н |  |  |
| <b>Tyrosine</b><br>aturally occurring amino acid) | Fluorinated tyrosine mimic<br>(fluorine-containing amino acid)                                                                                     |                            |  |  |
|                                                   |                                                                                                                                                    |                            |  |  |



#### • Goals

- -Compute the physicochemical properties of fluorine-substituted molecules using Density Functional Theory (DFT) to determine hydrogen bonding capabilities
- -Compare these theoretical calculations to <u>experimental results</u> obtained in the lab
- -Establish relationships between data sets as a basis for predicting the properties and interactions of these molecules

• Timeframe

-Start date: October 1<sup>st</sup>, 2023 -End date: April 1<sup>st</sup>, 2024



#### Fluorine Containing Molecules Investigated Through Theoretical Calculations



Fluorine substituted benzimidazole molecule

Fluorine substituted benzoxazole molecule

Fluorine substituted isoquinoline molecule

Fluorine substituted quinoline molecule

CYBERTEAM

CAREERS

### Gaussian Calculations Performed Using HPC

#### **Simple Structure**



Fluorine substituted nitro benzimidazole molecule



#### **Gauss View Structure**



Fluorine substituted nitro benzimidazole molecule

CAREERS CYBERTEAM

### Gaussian Calculations Performed Using HPC

- Optimization  $\rightarrow$  Geometric optimization
- Frequency  $\rightarrow$  Vibrational frequencies
- Energy  $\rightarrow$  Single point energy
- NMR  $\rightarrow$  Shielding of nuclei
- Scan  $\rightarrow$  Potential energy surface scan

CAREE

Theoretical Hydrogen Bonding Energy Determined by Data Obtained from Gaussian Optimizations

![](_page_9_Picture_1.jpeg)

![](_page_9_Picture_2.jpeg)

Fluorine substituted benzimidazole molecule

![](_page_9_Picture_4.jpeg)

Dimethyl sulfoxide (DMSO)

![](_page_9_Picture_6.jpeg)

 $\Delta E= -6.8 \text{ kcal/mol}$   $\Delta G= 2.3 \text{ kcal/mol}$ NBO H Charge= 0.28  $K_a= 48.6 \text{ M}^{-1}$ 

Hydrogen bonding complex between fluorine substituted benzimidazole and DMSO

CAREERS

CYBE/R TEAM

Optimized at the (IEFPCM-DMSO) M06-2X/6-31+G(d,p) level

### Experimental Procedures to Generate Data for Comparison

![](_page_10_Picture_1.jpeg)

UV-Vis Titration

- Measuring change in absorption of a solution as concentration changes
- A hydrogen bond changes the absorption of Reichardt's Dye
- The concentration and absorption change can be used to calculate an association constant

CAREER

CYBERTEAM

Optimized at the (IEFPCM-Acetonitrile) M06-2X/6-31+G(d,p) level

#### Experimental Procedures to Generate Data for Comparison

![](_page_11_Picture_1.jpeg)

Theoretical:  $K_a = 113.1 \text{ M}^{-1}$ Experimental:  $K_a = 152.74 \text{ M}^{-1}$ 

![](_page_11_Picture_3.jpeg)

Optimized at the (IEFPCM-Acetonitrile) M06-2X/6-31+G(d,p) level

### Nuclear Magnetic Resonance (NMR) Experiments

![](_page_12_Figure_1.jpeg)

 An "MRI For Molecules"

 Each peak corresponds to an atom within the

molecule

CAREERS CYBERTEAM

#### NMR Spectrum of Fluorine Substituted Methyl Pyridine

| 10  | H Isotı | copic = |   | 24.3707 | 1   | Anisotropy = | 4.2253 |
|-----|---------|---------|---|---------|-----|--------------|--------|
| XX= | 22.5991 | YX=     | - | 1.4226  | ZX= | -0.5973      |        |
| XY= | -1.6454 | YY=     | 2 | 6.1591  | ZY= | -1.1677      |        |
| XZ= | -3.1934 | YZ=     | - | 2.1563  | ZZ= | = 24.3537    |        |

![](_page_13_Figure_2.jpeg)

\*\*Gaussian calculations do not generate a chemical shift spectrum like this. They calculate the **shielding tensor** of each atom, which is scaled differently than chemical shift.\*\*

![](_page_13_Picture_4.jpeg)

#### Linear Regressions Generated From Known Reference Compounds

![](_page_14_Figure_1.jpeg)

CAREERS CYBERTEAM

# Correlation of Calculated NMR with Experimental NMR

![](_page_15_Picture_1.jpeg)

Fluorine substituted quinoline molecule

![](_page_15_Figure_3.jpeg)

CAREERS

CYBERTEAM

Optimized at the (IEFPCM-Acetonitrile) M06-2X/6-31+G(d,p) level

- The Polarizable Continuum Model in Gaussian considers your molecule in the net "field" of the solvent
- Does not account well for actual interaction with individual solvent molecules

![](_page_16_Picture_3.jpeg)

![](_page_17_Figure_1.jpeg)

Lima, Telma & Caliri, A. & Barroso da Silva, Fernando Luís & Tinós, Renato & Travieso, Gonzalo & Silva, Ivan & Lopes de Souza, Paulo & Marques, Eduardo & Delbem, Alexandre & Bonatto, Vanderlei & Faccioli, Rodrigo & Brasil, Christiane & Gabriel, Paulo & Tragante, Vinicius & Bonetti, Daniel. (2009). Some Modeling Issues for Protein Structure Prediction Using Evolutionary Algorithms. 10.13140/2.1.3164.6728.

CYBERTEAM

1 explicit solvent molecule (acetonitrile)

CYBERTEAM

![](_page_18_Picture_2.jpeg)

#### No explicit solvent molecule

![](_page_19_Figure_2.jpeg)

#### 1 explicit solvent molecule

![](_page_19_Figure_4.jpeg)

#### • Overall Findings

Our CF2H substituted molecules so far have hydrogen bonding capabilities (K<sub>a</sub> in the range of 125-150 M<sup>-1</sup>)

- -OH functional groups of comparable structure have K<sub>a</sub> in the range of 200-250 M<sup>-1</sup>
- -We can utilize explicit solvation to better simulate H-bonding interactions and increase the accuracy of our theoretical calculations

CAREERS CYBERTEAM

#### Lessons Learned

—Becoming familiar with the HPC system

- —Expanded knowledge of Density Functional Theory
- —Gained insights into how fluorine can function in a molecule to allow hydrogen bonding
- -Data organization
- —Honed skills performing NMR and UV-Vis spectroscopy in the laboratory

#### **Publications/Contributions**

- The data/findings of this project are being written in a manuscript to be submitted to the Beilstein Journal of Organic Chemistry
- Still some experimental data to collect
- We are targeting to have our manuscript finished early this summer

![](_page_22_Picture_4.jpeg)

# Questions?

Matthew Paolella University of Rhode Island <u>mpaolell@uri.edu</u>

fangwang@uri.edu

![](_page_23_Picture_3.jpeg)