Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
Enhanced Sampling for MD simulations
1
ACCESS HPC Workshop Series
1
Monthly workshops sponsored by ACCESS on a variety of HPC topics organized by Pittsburgh Supercomputing Center (PSC). Each workshop will be telecast to multiple satellite sites and workshop materials are archived.
Introduction to GPU/Parallel Programming using OpenACC
0
Introduction to the basics of OpenACC.
Benchmarking with a cross-platform open-source flow solver, PyFR
0
What is PyFR and how does it solve fluid flow problems?
PyFR is an open-source Computational Fluid Dynamics (CFD) solver that is based on Python and employs the high-order Flux Reconstruction technique. It effectively solves fluid flow problems by utilizing streaming architectures, making it suitable for complex fluid dynamics simulations.
How does PyFR achieve scalability on clusters with CPUs and GPUs?
PyFR achieves scalability by leveraging distributed memory parallelism through the Message Passing Interface (MPI). It implements persistent, non-blocking MPI requests using point-to-point (P2P) communication and organizes kernel calls to enable local computations while exchanging ghost states. This design approach allows PyFR to efficiently operate on clusters with heterogeneous architectures, combining CPUs and GPUs.
Why is PyFR valuable for benchmarking clusters?
PyFR's exceptional performance has been recognized by its selection as a finalist in the ACM Gordon Bell Prize for High-Performance Computing. It demonstrates strong-scaling capabilities by effectively utilizing low-latency inter-GPU communication and achieving strong-scaling on unstructured grids. PyFR has been successfully benchmarked with up to 18,000 NVIDIA K20X GPUs on Titan, showcasing its efficiency in handling large-scale simulations.
Navier-Stokes Cahn-Hilliard (NSCH) for MOOSE Framework
0
The MOOSE Navier-Stokes Cahn-Hilliard (NSCH) application is a library for implementing simulation tools that solve the Navier-Stokes Cahn-Hilliard equations with non-matching densities using Galerkin finite element methods with a residual-based stabilization scheme.
MATLAB with other Programming Languages
0
MATLAB is a really useful tool for data analysis among other computational work. This tutorial takes you through using MATLAB with other programming languages including C, C++, Fortran, Java, and Python.
CUDA Toolkit Documentation
0
NVIDIA CUDA Toolkit Documentation: If you are working with GPUs in HPC, the NVIDIA CUDA Toolkit is essential. You can access the CUDA Toolkit documentation, including programming guides and API references, at this provided website
Introduction to Parallel Programming for GPUs with CUDA
0
This tutorial provides a comprehensive introduction to CUDA programming, focusing on essential concepts such as CUDA thread hierarchy, data parallel programming, host-device heterogeneous programming model, CUDA kernel syntax, GPU memory hierarchy, and memory optimization techniques like global memory coalescing and shared memory bank conflicts. Aimed at researchers, students, and practitioners, the tutorial equips participants with the skills needed to leverage GPU acceleration for scalable computation, particularly in the context of AI.
OpenMP Tutorial
0
OpenMP (Open Multi-Processing) is an API that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.
Vulkan Support Survey across Systems
0
It's not uncommon to see beautiful visualizations in HPC center galleries, but the majority of these are either rendered off the HPC or created using programs that run on OpenGL or custom rasterization techniques. To put it simply the next generation of graphics provided by OpenGL's successor Vulkan is strangely absent in the super computing world. The aim of this survey of available resources is to determine the systems that can support Vulkan workflows and programs. This will assist users in getting past some of the first hurdles in using Vulkan in HPC contexts.
C Programming
0
"These notes are part of the UW Experimental College course on Introductory C Programming. They are based on notes prepared (beginning in Spring, 1995) to supplement the book The C Programming Language, by Brian Kernighan and Dennis Ritchie, or K&R as the book and its authors are affectionately known. (The second edition was published in 1988 by Prentice-Hall, ISBN 0-13-110362-8.) These notes are now (as of Winter, 1995-6) intended to be stand-alone, although the sections are still cross-referenced to those of K&R, for the reader who wants to pursue a more in-depth exposition." C is a low-level programming language that provides a deep understanding of how a computer's memory and hardware work. This knowledge can be valuable when optimizing apps for performance or when dealing with resource-constrained environments.C is often used as the foundation for creating cross-platform libraries and frameworks. Learning C can allow you to develop libraries that can be used across different platforms, including iOS, Android, and desktop environments.
Examples of code using JSON nlohmann header only Library for C++
0
This code showcases how to work with the header-only nlohmann JSON library for C++. In order to compile, change the extensions from json_test.txt to json_test.cpp and test.txt to test.json. You must also download the header files from https://github.com/nlohmann/json. Complilation instructions are at the bottom of json_test. This code is very helpful for creating config files, for example.
Introduction to MP
0
Open Multi-Processing, is an API designed to simplify the integration of parallelism in software development, particularly for applications running on multi-core processors and shared-memory systems. It is an important resource as it goes over what openMP and ways to work with it. It is especially important because it provides a straightforward way to express parallelism in code through pragma directives, making it easier to create parallel regions, parallelize loops, and define critical sections. The key benefit of OpenMP lies in its ease of use, automatic thread management, and portability across various compilers and platforms. For app development, especially in the context of mobile or desktop applications, OpenMP can enhance performance by leveraging the capabilities of modern multi-core processors. By parallelizing computationally intensive tasks, such as image processing, data analysis, or simulations, apps can run faster and more efficiently, providing a smoother user experience and taking full advantage of the available hardware resources. OpenMP's scalability allows apps to adapt to different hardware configurations, making it a valuable tool for developers aiming to optimize their software for a range of devices and platforms.
Setting up PyFR flow solver on clusters
0
These instructions were executed on the FASTER and Grace cluster computing facilities at Texas A&M University. However, the process can be applied to other clusters with similar environments. For local installation, please refer to the PyFR documentation.
Please note that these instructions were valid at the time of writing. Depending on the time you're executing these, the versions of the modules may need to be updated.
1. Loading Modules
The first step involves loading pre-installed software libraries required for PyFR. Execute the following commands in your terminal to load these modules:
module load foss/2022b
module load libffi/3.4.4
module load OpenSSL/1.1.1k
module load METIS/5.1.0
module load HDF5/1.13.1
2. Python Installation from Source
Choose a location for Python 3.11.1 installation, preferably in a .local directory. Navigate to the directory containing the Python 3.11.1 source code. Then configure and install Python:
cd $INSTALL/Python-3.11.1/
./configure --prefix=$LOCAL --enable-shared --with-system-ffi --with-openssl=/sw/eb/sw/OpenSSL/1.1.1k-GCCcore-11.2.0/ PKG_CONFIG_PATH=$LOCAL/pkgconfig LDFLAGS=/usr/lib64/libffi.so.6.0.2
make clean; make -j20; make install;
3. Virtual Environment Setup
A virtual environment allows you to isolate Python packages for this project from others on your system. Create and activate a virtual environment using:
pip3.11 install virtualenv
python3.11 -m venv pyfr-venv
. pyfr-venv/bin/activate
4. Install PyFR Dependencies
Several Python packages are required for PyFR. Install these packages using the following commands:
pip3 install --upgrade pip
pip3 install --no-cache-dir wheel
pip3 install --no-cache-dir botorch pandas matplotlib pyfr
pip3 uninstall -y pyfr
5. Install PyFR from Source
Finally, navigate to the directory containing the PyFR source code, and then install PyFR:
cd /scratch/user/sambit98/github/PyFR/
python3 setup.py develop
Congratulations! You've successfully set up PyFR on the FASTER and Grace cluster computing facilities. You should now be able to use PyFR for your computational fluid dynamics simulations.
Header-only C++ JSON library
0
JSON is a lightweight format for storing and transporting data, for example in a config file. This library is header-only, and has easy-to-read documentation. It is a C++ library.