Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
NCSA HPC Training Moodle
1
Self-paced tutorials on high-end computing topics such as parallel computing, multi-core performance, and performance tools. Other related topics include 'Cybersecurity for End Users' and 'Developing Webinar Training.' Some of the tutorials also offer digital badges. Many of these tutorials were previously offered on CI-Tutor. A list of open access training courses are provided below.
Parallel Computing on High-Performance Systems
Profiling Python Applications
Using an HPC Cluster for Scientific Applications
Debugging Serial and Parallel Codes
Introduction to MPI
Introduction to OpenMP
Introduction to Visualization
Introduction to Performance Tools
Multilevel Parallel Programming
Introduction to Multi-core Performance
Using the Lustre File System
ACCESS HPC Workshop Series
1
Monthly workshops sponsored by ACCESS on a variety of HPC topics organized by Pittsburgh Supercomputing Center (PSC). Each workshop will be telecast to multiple satellite sites and workshop materials are archived.
Raftlib: Open Source library for concurrent data processing pipelines
0
Raftlib is an open-source C++ Library that provides a framework for implementing parallel and concurrent data processing pipelines. It is designed to simplify the development of high-performance data processing applications by abstracting away the complexities of parallelism, concurrency, and data flow management.
It enables stream/data-flow parallel computation by linking parallel compute kernels together using simple right shift operators, similar to C++ streams for string manipulation. RaftLib eliminates the need for explicit usage of traditional threading libraries such as pthreads, std::thread, or OpenMP, which can lead to non-deterministic behavior when misused.
Tutorial for OpenMP Building up and Utilization
0
The following link elaborates the usage of OpenMP API and its related syntax. There are also several exercises available for learners to help them get familiar with this widely-used tool for multi-threaded realization.
OpenMP and Multithreaded Jobs in GRASS
0
Techniques and support for multithreaded geospatial data processing in GRASS.
Introduction to MP
0
Open Multi-Processing, is an API designed to simplify the integration of parallelism in software development, particularly for applications running on multi-core processors and shared-memory systems. It is an important resource as it goes over what openMP and ways to work with it. It is especially important because it provides a straightforward way to express parallelism in code through pragma directives, making it easier to create parallel regions, parallelize loops, and define critical sections. The key benefit of OpenMP lies in its ease of use, automatic thread management, and portability across various compilers and platforms. For app development, especially in the context of mobile or desktop applications, OpenMP can enhance performance by leveraging the capabilities of modern multi-core processors. By parallelizing computationally intensive tasks, such as image processing, data analysis, or simulations, apps can run faster and more efficiently, providing a smoother user experience and taking full advantage of the available hardware resources. OpenMP's scalability allows apps to adapt to different hardware configurations, making it a valuable tool for developers aiming to optimize their software for a range of devices and platforms.