High Performance Computing vs Quantum Computing for Neural Networks supporting Artificial Intelligence
Project Information
ai, big-data, deep-learning, github, hpc-cluster-architecture, hpc-operations, jupyterhub, machine-learning, natural-language-processing, proposal-development, python, quantum-mechanics, research-facilitation, research-grants, resources, scikit-learn, singularity, vectorizationProject Status: Complete
Project Region: CAREERS
Submitted By: Avery Leider
Project Email: jhill@pace.edu
Project Institution: Pace University
Anchor Institution: CR-Rensselaer Polytechnic Institute
Project Address: 861 Bedford Rd
Pleasantville, New York. 10570
Mentors: Avery Leider, Neil McGlohon
Students: Gio Abou Jaoude
Project Description
A personalized learning system that adapts to learners' interests, needs, prior knowledge, and available resources is possible with artificial intelligence (AI) that utilizes natural language processing in neural networks. These deep learning neural networks can run on high performance computers (HPC) or on quantum computers (QC). Both HPC and QC are emergent technologies. Understanding both systems well enough to select which is more effective for a deep learning AI program, and show that understanding through example, is the ultimate goal of this project. The entry to learning technologies such as HPC and QC is narrow at present because it relies on classical education methods and mentoring. The gap between the knowledge workers needed, which is in high demand, and those with the expertise to teach, which is being achieved at a much slower rate, is widening. Here, an AI cognitive agent, trained via deep learning neural networks, can help in emergent technology subjects by assisting the instructor-learner pair with adaptive wisdom. We are building the foundations for this AI cognitive agent in this project.The role of the student facilitator will involve optimizing a deep learning neural network, comparing and contrasting with the newest technologies, such as a quantum computer (and/or a quantum computer simulator) and a high performance computer and showing the efficiency of the different computing approaches. The student facilitator will perform these tasks at the rate described in the proposal. Milestone work will be displayed and shared publicly via posting to the Jupyter Notebooks on Google Colab and linked to regular Github uploads.
Additional Resources
Github Contributions: https://github.com/AveryLeider/QNNWrap Presentation: 7 months
Project Information
ai, big-data, deep-learning, github, hpc-cluster-architecture, hpc-operations, jupyterhub, machine-learning, natural-language-processing, proposal-development, python, quantum-mechanics, research-facilitation, research-grants, resources, scikit-learn, singularity, vectorizationProject Status: Complete
Project Region: CAREERS
Submitted By: Avery Leider
Project Email: jhill@pace.edu
Project Institution: Pace University
Anchor Institution: CR-Rensselaer Polytechnic Institute
Project Address: 861 Bedford Rd
Pleasantville, New York. 10570
Mentors: Avery Leider, Neil McGlohon
Students: Gio Abou Jaoude
Project Description
A personalized learning system that adapts to learners' interests, needs, prior knowledge, and available resources is possible with artificial intelligence (AI) that utilizes natural language processing in neural networks. These deep learning neural networks can run on high performance computers (HPC) or on quantum computers (QC). Both HPC and QC are emergent technologies. Understanding both systems well enough to select which is more effective for a deep learning AI program, and show that understanding through example, is the ultimate goal of this project. The entry to learning technologies such as HPC and QC is narrow at present because it relies on classical education methods and mentoring. The gap between the knowledge workers needed, which is in high demand, and those with the expertise to teach, which is being achieved at a much slower rate, is widening. Here, an AI cognitive agent, trained via deep learning neural networks, can help in emergent technology subjects by assisting the instructor-learner pair with adaptive wisdom. We are building the foundations for this AI cognitive agent in this project.The role of the student facilitator will involve optimizing a deep learning neural network, comparing and contrasting with the newest technologies, such as a quantum computer (and/or a quantum computer simulator) and a high performance computer and showing the efficiency of the different computing approaches. The student facilitator will perform these tasks at the rate described in the proposal. Milestone work will be displayed and shared publicly via posting to the Jupyter Notebooks on Google Colab and linked to regular Github uploads.
Additional Resources
Github Contributions: https://github.com/AveryLeider/QNNWrap Presentation: 7 months