Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
ACCESS Video Learning Center
0
A library of short videos about ACCESS allocations, resources and support.
Displaying Scientific Data with Tableau
0
Tableau is a popular and capable software product for creating charts that present data and dashboards that allow you to explore data. It is typically used to present business or statistical data, but can also create compelling visualizations of scientific data. However, scientific data is often generated or stored in formats that are not immediately accessible by Tableau. This seminar will explore the data formats that work best with Tableau and the available mechanisms for generating scientific data in (or converting it to) those formats so that you can apply the full power of Tableau to create the best possible visualizations of your data.
Docker Tutorial for Beginners
0
A Docker tutorial for beginners is a course that teaches the basics of Docker, a containerization platform that allows you to package your application and its dependencies into a standardized unit for development, shipment, and deployment.
The Theory Behind Neural Networks (Very Simplified)
0
This video by the YouTube channel 3Blue1Brown provides a very simplified introduction to the theory behind neural networks. This tutorial is perfect for those that don't have much linear algebra or machine learning background and are eager to step into the realm of ML!
Practical Machine Learning with Python
0
This video series provides a holistic understanding of machine learning, covering theory, application, and inner workings of supervised, unsupervised, and deep learning algorithms. It covers topics such as linear regression, K Nearest Neighbors, Support Vector Machines (SVM), flat clustering, hierarchical clustering, and neural networks. Goes over the high level intuitions of the algorithms and how they are logically meant to work. Apply the algorithms in code using real world data sets along with a module, such as with Scikit-Learn.
Python Tools for Data Science
0
Python has become a very popular programming language and software ecosystem for work in Data Science, integrating support for data access, data processing, modeling, machine learning, and visualization. In this webinar, we will describe some of the key Python packages that have been developed to support that work, and highlight some of their capabilities. This webinar will also serve as an introduction and overview of topics addressed in two Cornell Virtual Workshop tutorials, available at https://cvw.cac.cornell.edu/pydatasci1 and https://cvw.cac.cornell.edu/pydatasci2
AWS Tutorial For Beginners
0
An AWS Tutorial for Beginners is a course that teaches the basics of Amazon Web Services (AWS), a cloud computing platform that offers a wide range of services, including compute, storage, networking, databases, analytics, machine learning, and artificial intelligence.
How-To Video: ACCESS Allocations
0
This video will walk you through the process of efficiently utilizing and managing your ACCESS project(s). Here, you’ll find instructions on how to request resources, extend the end date of a project, renew a request, and all the other necessary tasks to successfully manage your project.
Natural Language Processing with Deep Learning
0
CS244N is a renowned natural language processing course offered by Stanford University and taught by Christopher Manning. It covers a wide range of topics in NLP, including language modeling, machine translation, sentiment analysis, and more. It teaches both foundational concepts and cutting-edge research to gain a comprehensive understanding of NLP techniques and applications.
Fine-tuning LLMs with PEFT and LoRA
0
As LLMs get larger fine-tuning to the full extent can become difficult to train on consumer hardware. Storing and deploying these tuned models can also be quite expensive and difficult to store. With PEFT (parameter -efficent fine tuning), it approaches fine-tune on a smaller scale of model parameters while freezing most parameters of the pretrained LLMs. Basically it is providing full performance that which is similar if not better than full fine tuning while only having a small number of trainable parameters. This source explains that as well as going over LORA diagrams and a code walk through.
Containerization Explained
0
Containerization is a software development method in which applications are packaged into standard units for development, shipment, and deployment.
How-To Video: Apply for an ACCESS Allocation
0
ACCESS Allocations website tour, and how to apply for allocations.
Reinforcement Learning For Beginners with Python
0
This course takes through the fundamentals required to get started with reinforcement learning with Python, OpenAI Gym and Stable Baselines. You'll be able to build deep learning powered agents to solve a varying number of RL problems including CartPole, Breakout and CarRacing as well as learning how to build your very own/custom environment!
Data Imputation Methods for Climate Data and Mortality Data
0
This slices and videos introduced how to use K-Nearest-Neighbors method to impute climate data and how to use Bayesian Spatio-Temporal models in R-INLA to impute mortality data. The demos will be added soon.
OpenStack Tutorial For Beginners
0
OpenStack Tutorial For Beginners
Managing and Optimizing Your Jobs on HPC
0
An overview of tools and methods to manage and optimize jobs and HPC workflows
Data Analysis with R for Educators
0
This webinar series is an orientation to R. We start with an overview of R’s history and place in the larger data science ecosystem. Next, we introduce the R Studio user interface and how to access R’s excellent documentation. Finally, we present the fundamental concepts you need to use the R environment and language for data analysis. Along the way, we compare R script files (.R) to R Notebook (.Rmd) files and show how the features of R Notebook support better communication and encourage more dynamic engagement with statistical analysis and code. It is helpful to be familiar with tabular data analysis using statistical software, database tools, or spreadsheet programs.
Workshop materials, including setup directions and slides are available at https://github.com/CornellCAC/r_for_edu/ The Rstudio Cloud project used in the workshop is https://rstudio.cloud/project/4044219.
ACCESS - Video for new ACCESS users
0
This is a short video on how to exchange ACCESS credits and connect to Jetstream 2 (please note this was created for Duke users but applies to all) .
High Performance Computing (HPC) 101 - Cluster
0
High Performance Computing (HPC) Cluster