Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
Applications of Machine Learning in Engineering and Parameter Tuning Tutorial
0
Slides for a tutorial on Machine Learning applications in Engineering and parameter tuning given at the RMACC conference 2019.
Electric field analyses for molecular simulations
0
Tool to compute electric fields from molecular simulations
PyTorch Introduction
0
This is a very barebones introduction to the PyTorch framework used to implement machine learning. This tutorial implements a feed-forward neural network and is taught completely asynchronously through Stanford University. A good start after learning the theory behind feed-forward neural networks.
Setting up PyFR flow solver on clusters
0
These instructions were executed on the FASTER and Grace cluster computing facilities at Texas A&M University. However, the process can be applied to other clusters with similar environments. For local installation, please refer to the PyFR documentation.
Please note that these instructions were valid at the time of writing. Depending on the time you're executing these, the versions of the modules may need to be updated.
1. Loading Modules
The first step involves loading pre-installed software libraries required for PyFR. Execute the following commands in your terminal to load these modules:
module load foss/2022b
module load libffi/3.4.4
module load OpenSSL/1.1.1k
module load METIS/5.1.0
module load HDF5/1.13.1
2. Python Installation from Source
Choose a location for Python 3.11.1 installation, preferably in a .local directory. Navigate to the directory containing the Python 3.11.1 source code. Then configure and install Python:
cd $INSTALL/Python-3.11.1/
./configure --prefix=$LOCAL --enable-shared --with-system-ffi --with-openssl=/sw/eb/sw/OpenSSL/1.1.1k-GCCcore-11.2.0/ PKG_CONFIG_PATH=$LOCAL/pkgconfig LDFLAGS=/usr/lib64/libffi.so.6.0.2
make clean; make -j20; make install;
3. Virtual Environment Setup
A virtual environment allows you to isolate Python packages for this project from others on your system. Create and activate a virtual environment using:
pip3.11 install virtualenv
python3.11 -m venv pyfr-venv
. pyfr-venv/bin/activate
4. Install PyFR Dependencies
Several Python packages are required for PyFR. Install these packages using the following commands:
pip3 install --upgrade pip
pip3 install --no-cache-dir wheel
pip3 install --no-cache-dir botorch pandas matplotlib pyfr
pip3 uninstall -y pyfr
5. Install PyFR from Source
Finally, navigate to the directory containing the PyFR source code, and then install PyFR:
cd /scratch/user/sambit98/github/PyFR/
python3 setup.py develop
Congratulations! You've successfully set up PyFR on the FASTER and Grace cluster computing facilities. You should now be able to use PyFR for your computational fluid dynamics simulations.
AI for improved HPC research - Cursor and Termius - Powerpoint
0
These slides provide an introduction on how Termius and Cursor, two new and freemium apps that use AI to perform more efficient work, can be used for faster HPC research.
Header-only C++ JSON library
0
JSON is a lightweight format for storing and transporting data, for example in a config file. This library is header-only, and has easy-to-read documentation. It is a C++ library.
GPU Acceleration in Python
0
This tutorial explains how to use Python for GPU acceleration with libraries like CuPy, PyOpenCL, and PyCUDA. It shows how these libraries can speed up tasks like array operations and matrix multiplication by using the GPU. Examples include replacing NumPy with CuPy for large datasets and using PyOpenCL or PyCUDA for more control with custom GPU kernels. It focuses on practical steps to integrate GPU acceleration into Python programs.
MDAnalysis - Python library for the analysis of molecular dynamics simulations
0
MDAnalysis is a python based library of tools for the analysis of molecular dynamics simulations. It is able to read and write many popular simulation formats including CHARMM, LAMMPS, GROMACS, and AMBER and more. This link contains the documentation pages of all MDAnalysis functions and has links to tutorials using Jupyter Notebooks.