Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
Introduction to Python for Digital Humanities and Computational Research
1
This documentation contains introductory material on Python Programming for Digital Humanities and Computational Research. This can be a go-to material for a beginner trying to learn Python programming and for anyone wanting a Python refresher.
Useful R Packages for Data Science and Statistics
1
This Udacity article listed the most frequently used R packages for data science and statistics. For each package, the article provided the link to its official documentation. It will be a great start point if you want to start your data science journey in R.
Samtools Documentation
0
Samtools is a suite of programs for interacting with high-throughput sequencing data, especially in the SAM/BAM format. It offers various utilities for processing, analyzing, and managing sequence data generated from next-generation sequencing (NGS) experiments. Samtools is widely used in bioinformatics and genomics research for tasks such as read alignment, variant calling, and data manipulation.
Weka
0
Weka is a collection of machine learning algorithms for data mining tasks. It contains tools for data preparation, classification, regression, clustering, association rules mining, and visualization.
Optimizing Research Workflows - A Documentation of Snakemake
0
Snakemake is a powerful and versatile workflow management system that simplifies the creation, execution, and management of data analysis pipelines. It uses a user-friendly, Python-based language to define workflows, making it particularly valuable for automating and reproducibly managing complex computational tasks in research and data analysis.
Online Bachelor's in Data Science Program Guide - TechGuide
0
The realm of data science is one that onlookers regard with curiosity and respect. There are a lot of unknowns in this area of study that only recently became hugely relevant. It is important to get the facts on how expertise in data science is transforming the world. This article features what a bachelor’s degree means in today’s market and the future.
Data Analysis with R for Educators
0
This webinar series is an orientation to R. We start with an overview of R’s history and place in the larger data science ecosystem. Next, we introduce the R Studio user interface and how to access R’s excellent documentation. Finally, we present the fundamental concepts you need to use the R environment and language for data analysis. Along the way, we compare R script files (.R) to R Notebook (.Rmd) files and show how the features of R Notebook support better communication and encourage more dynamic engagement with statistical analysis and code. It is helpful to be familiar with tabular data analysis using statistical software, database tools, or spreadsheet programs.
Workshop materials, including setup directions and slides are available at https://github.com/CornellCAC/r_for_edu/ The Rstudio Cloud project used in the workshop is https://rstudio.cloud/project/4044219.
Numpy - a Python Library
0
Numpy is a python package that leverages types and compiled C code to make many math operations in Python efficient. It is especially useful for matrix manipulation and operations.
A survey on datasets for fairness-aware machine learning
0
The research paper provides an overview of various datasets that have been used to study fairness in machine learning. It discusses the characteristics of these datasets, such as their size, diversity, and the fairness-related challenges they address. The paper also examines the different domains and applications covered by these datasets.
Online Master's in Business Analytics Program Guide - TechGuide
0
A degree in business analytics looks different in today’s world than it did a decade ago. In its most current application, business analytics uses modern data science and capabilities in machine learning (ML). The magic comes into play when these are leveraged for strategic planning.
Python Tools for Data Science
0
Python has become a very popular programming language and software ecosystem for work in Data Science, integrating support for data access, data processing, modeling, machine learning, and visualization. In this webinar, we will describe some of the key Python packages that have been developed to support that work, and highlight some of their capabilities. This webinar will also serve as an introduction and overview of topics addressed in two Cornell Virtual Workshop tutorials, available at https://cvw.cac.cornell.edu/pydatasci1 and https://cvw.cac.cornell.edu/pydatasci2
Fairness and Machine Learning
0
The "Fairness and Machine Learning" book offers a rigorous exploration of fairness in ML and is suitable for researchers, practitioners, and anyone interested in understanding the complexities and implications of fairness in machine learning.
Master's in Data Science Program Guide - TechGuide
0
A master’s degree in data science helps prepare professionals to take the next career step. This article will focus primarily on data science, a graduate degree in this field, and a data scientist or data analyst career. With many employers preferring a master’s degree in data science for those seeking to fill roles as data scientists or analysts, we will discuss the data science master’s degree in detail.
R for Data Science
0
R for Data Science is a comprehensive resource for individuals looking to harness the power of the R programming language for data analysis, visualization, and statistical modeling. Whether you're a beginner or an experienced data scientist, this guide will help you unlock the full potential of R in the realm of data science.
HPCwire
0
HPCwire is a prominent news and information source for the HPC community. Their website offers articles, analysis, and reports on HPC technologies, applications, and industry trends.