Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
Rockfish at Johns Hopkins University
0
Resources and User Guide available at Rockfish
Factor Graphs and the Sum-Product Algorithm
0
A tutorial paper that presents a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes either exactly or approximately various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms
ACCESS KB Guide - DELTA
0
NCSA is the home of Delta, a computing and data resource that balances cutting-edge graphics processor and CPU architectures with a non-POSIX file system with a POSIX-like interface. Delta allows applications to reap the benefits of modern file systems without rewriting code.
Info about retiring of R GIS packages rgdal, rgeos, maptools in 2023
0
R GIS packages "rgdal", "rgeos", and "maptools" are package set to be archived and no longer supported by end of 2023. Many other R GIS packages are build on top of these packages, including "sp" and "raster". The packages recommended as replacement for "sp" is "sf" and the replacement for "raster" is "terra". Below are links to published articles regarding this transition. Additionally, I am including links to the documentation for the new packages recommended to be used "sf" and "terra".
Application Fundamentals (Android)
0
The provided text discusses various aspects of Android app development fundamentals. It covers key concepts related to app components, the AndroidManifest.xml file, and app resources. Android apps are built using various components, including Activities, Services, Broadcast Receivers, and Content Providers. These components serve different purposes and have distinct lifecycles. Activities are used for user interaction, services for background tasks, broadcast receivers for system-wide event handling, and content providers for managing shared data.The AndroidManifest.xml file is essential for declaring app components, permissions, and other settings. It informs the Android system about the app's components and capabilities. For instance, it specifies the minimum API level, declares hardware and software requirements, and defines intent filters to enable components to respond to specific actions.It's crucial to declare app requirements, such as device features and minimum Android API levels, to ensure compatibility with different devices and configurations. These declarations help in filtering the app's availability on Google Play for users with compatible devices.Android apps rely on resources separate from code, including images, layouts, strings, and more. These resources are stored in various directories and can be tailored for different device configurations. Providing alternative resources allows for optimization across different languages, screen sizes, orientations, and other factors.
Understanding these fundamentals is essential for developing Android applications effectively, ensuring compatibility, and providing a consistent user experience across a wide range of devices and configurations.
Educause HEISC-800-171 Community Group
0
The purpose of this group is to provide a forum to discuss NIST 800-171 compliance. Participants are encouraged to collaborate and share effective practices and resources that help higher education institutions prepare for and comply with the NIST 800-171 standard as it relates to Federal Student Aid (FSA), CMMC, DFARS, NIH, and NSF activities.
Developer Stories Podcast
0
As developers, we get excited to think about challenging problems. When you ask us what we are working on, our eyes light up like children in a candy store. So why is it that so many of our developer and software origin stories are not told? How did we get to where we are today, and what did we learn along the way? This podcast aims to look “Behind the Scenes of Tech’s Passion Projects and People.” We want to know your developer story, what you have built, and why. We are an inclusive community - whatever kind of institution or country you hail from, if you are passionate about software and technology you are welcome!
RMACC Systems Administrator Workshop Slides
0
A compilation of the slides from this year's RMACC Sys Admin Workshop.
RMACC Sys Admin Workhop Schedule:
Tuesday
12:00 PM Sign-in
1:00 PM Introductions
1:30 PM Lightning Talk - HPC Survival guide
2:00 PM Node Management - Scott Serr
2:30 PM Lightning Talk - Warewulf
3:00 PM Urgent HPC - Coltran Hophan-Nichols and Alexander Salois
Wednesday
9:00 AM Breakfast
10:00 AM Round table Sites - BYU, INL, UMT, ASU, MSU
11:00 AM Open OnDemand setup - Dean Anderson
11:30 AM Lightning talk - Long term hardware support
12:00 PM Lunch
1:00 PM HPC Security - Matt Bidwell
2:00 PM Lightning talk- Security
2:30 PM ACCESS resources - Couso
3:00 PM Easybuild tutorial - Alexander Salois
3:30 PM General Q & A
Thursday
9:00 AM Breakfast
10:00 AM Lightning Talk- Containers and Virtual Machines
11:00 AM University of Montana - Hellgate Site Tour
11:30 AM Closing Remarks
FreeSurfer Tutorials
0
The official MGH / Harvard tutorial page for FreeSurfer. The FreeSurfer group has provided and designed a series of tutorials for using FreeSurfer and for getting acquainted with the concepts needed to perform its various modes of analysis and processing of MRI data. The tutorials are designed to be followed along in a terminal window where commands can be copy/pasted instead of typed.
OpenHPC: Beyond the Install Guide
0
Materials for the "OpenHPC: Beyond the Install Guide" half-day tutorial, first offered at PEARC24. The goal of this repository is to let instructors or self-learners to construct one or more OpenHPC 3.x virtual environments, for those environments to be as close as possible to the defaults from the OpenHPC installation guide, and to then use those environments to demonstrate several topics beyond the basic installation guide.
Topics include:
1. Building a login node that's practically identical to a compute node (except for where it needs to be different)
2. Adding more security to the SMS and login node
3. Using node-local storage for the OS and/or scratch
4. De-coupling the SMS and the compute nodes (e.g., independent kernel versions)
5. GPU driver installation (simulated/recorded, not live)
6. Easier management of node differences (GPU or not, diskless/single-disk/multi-disk, Infiniband or not, etc.)
7. Slurm configuration to match some common policy goals (fair share, resource limits, etc.)
AHPCC documentary
0
This link is a documentary website to use AHPCC.
Python Data and Viz Training (CCEP Program)
0
NERSC Training and Tutorials
0
A comprehensive collection of NERSC developed training and tutorial events, offered on regular schedules. All sessions are archived, including slide decks, video recordings, and software examples as are available. Some examples of past training and tutorial topics are listed below
Deep Learning for Sciences Webinar Series
BerkeleyGW Tutorial Workshop
VASP Trainings
Timemory Software Monitoring Tutorial, April 2021
HPCToolkit to Measure and Analyzing GPU Applications Performance Tutorial
Totalview Tutorial
NVidia HPCSDK - OpenMP Target Offload Training
Parallelware Training Series
ARM Debugging and Profiling Tools Tutorial
Roofline on NVIDIA GPUs
GPUs for Science events
3-part OpenACC Training Series
9-part CUDA Training Series
Advanced Mathematical Optimization Techniques
0
Mathematical optimization deals with the problem of finding numerically minimums or maximums of a functions. This tutorial provides the Python solutions for the optimization problems with examples.
AWS Tutorial For Beginners
0
An AWS Tutorial for Beginners is a course that teaches the basics of Amazon Web Services (AWS), a cloud computing platform that offers a wide range of services, including compute, storage, networking, databases, analytics, machine learning, and artificial intelligence.
MOPAC
0
MOPAC (Molecular Orbital PACkage) is a semi-empirical quantum chemistry package used to compute molecular properties and structures by using approximations of the Schrödinger equation. This tutorial explains the process of using MOPAC for different forms of calculations.
RMACC Website
0
Rocky Mountain Advanced Computing Consortium Website
Texas A&M HPRC Training Site
0
Training Resources and Courses offered by Texas A&M's Research Computing Group
Moving-Lid-Driven Flow Simulation by Finite Difference Method
0
The listed repository contains code written in C++ to model the flow inside a cavity with a lid moving above from left to right by discretizing incompressible N-S equations with finite difference method. For the governing equations, artificial viscosity has been considered to increase the stability. In terms of solving the resulted algebraic equation system, both the Point Jacobi Method and Symmetric Gauss Seidel methods have been used for the iteration process.
DELTA Introductory Video
0
Introductory video about DELTA. Speaker Tim Boerner, Senior Assistant Director, NCSA
Displaying Scientific Data with Tableau
0
Tableau is a popular and capable software product for creating charts that present data and dashboards that allow you to explore data. It is typically used to present business or statistical data, but can also create compelling visualizations of scientific data. However, scientific data is often generated or stored in formats that are not immediately accessible by Tableau. This seminar will explore the data formats that work best with Tableau and the available mechanisms for generating scientific data in (or converting it to) those formats so that you can apply the full power of Tableau to create the best possible visualizations of your data.
Running Particle-in-Cell Simulations on HPC
0
WarpX is an advanced particle-in-cell code used to model particle accelerators, which needs to be run on HPC. This website contains the tutorial on how to build WarpX on various HPC systems such as NERSC along with examples on how to set up post-processing/visualization tools for different physics cases.
Introduction to MP
0
Open Multi-Processing, is an API designed to simplify the integration of parallelism in software development, particularly for applications running on multi-core processors and shared-memory systems. It is an important resource as it goes over what openMP and ways to work with it. It is especially important because it provides a straightforward way to express parallelism in code through pragma directives, making it easier to create parallel regions, parallelize loops, and define critical sections. The key benefit of OpenMP lies in its ease of use, automatic thread management, and portability across various compilers and platforms. For app development, especially in the context of mobile or desktop applications, OpenMP can enhance performance by leveraging the capabilities of modern multi-core processors. By parallelizing computationally intensive tasks, such as image processing, data analysis, or simulations, apps can run faster and more efficiently, providing a smoother user experience and taking full advantage of the available hardware resources. OpenMP's scalability allows apps to adapt to different hardware configurations, making it a valuable tool for developers aiming to optimize their software for a range of devices and platforms.
Trusted CI
0
The mission of Trusted CI is to lead in the development of an NSF Cybersecurity Ecosystem with the workforce, knowledge, processes, and cyberinfrastructure that enables trustworthy science and NSF’s vision of a nation that is a global leader in research and innovation.
Horovod: Distributed deep learning training framework
0
Horovod is a distributed deep learning training framework. Using horovod, a single-GPU training script can be scaled to train across many GPUs in parallel. The library supports popular deep learning framework such as TensorFlow, Keras, PyTorch, and Apache MXNet.