Knowledge Base Resources
These resources are contributed by researchers, facilitators, engineers, and HPC admins. Please upvote resources you find useful!
The Carpentries
5
We teach foundational coding and data science skills to researchers worldwide.
HPC University
3
A comprehensive list of training resources from the HPC University. HPCU is a virtual organization whose primary goal is to provide a cohesive, persistent, and sustainable on-line environment to share educational and training materials for a continuum of high performance computing environments that span desktop computing capabilities to the highest-end of computing facilities offered by HPC centers.
Open OnDemand
2
Open OnDemand is an easy-to-use web portal that lets students, researchers, and industry professionals use supercomputers from anywhere. It is installed on supercomputing resources at hundreds of sites. By eliminating the need for client software or command-line interface, Open OnDemand empowers users of all skill levels and significantly speeds up the time to their first computing.
ACCESS Pegasus Documentation
1
The documentation provides an overview of using Pegasus, a workflow management system, on ACCESS resources for high throughput computing (HTC) workloads, covering logging in, workflow creation, resource configuration, and monitoring options.
Useful R Packages for Data Science and Statistics
1
This Udacity article listed the most frequently used R packages for data science and statistics. For each package, the article provided the link to its official documentation. It will be a great start point if you want to start your data science journey in R.
Cornell Virtual Workshop
1
Cornell Virtual Workshop is a comprehensive training resource for high performance computing topics. The Cornell University Center for Advanced Computing (CAC) is a leader in the development and deployment of Web-based training programs. Our Cornell Virtual Workshop learning platform is designed to enhance the computational science skills of researchers, accelerate the adoption of new and emerging technologies, and broaden the participation of underrepresented groups in science and engineering. Over 350,000 unique visitors have accessed Cornell Virtual Workshop training on programming languages, parallel computing, code improvement, and data analysis. The platform supports learning communities around the world, with code examples from national systems such as Frontera, Stampede2, and Jetstream2.
HPC Carpentry
1
An HPC focused Carpentry community. Trainings include: HPC fundamentals, python, chapel, LAMMPS, parallelization with python, scaling studies, etc.
DARWIN Documentation Pages
1
DARWIN (Delaware Advanced Research Workforce and Innovation Network) is a big data and high performance computing system designed to catalyze Delaware research and education
Open OnDemand Documentation Repository
1
This is the main documentation repo for the Open OnDemand Portal which enables researchers to access HPC resources from a familiar web interface.
Neurostars
0
A question and answer forum for neuroscience researchers, infrastructure providers and software developers.
Master's in Data Science Program Guide - TechGuide
0
A master’s degree in data science helps prepare professionals to take the next career step. This article will focus primarily on data science, a graduate degree in this field, and a data scientist or data analyst career. With many employers preferring a master’s degree in data science for those seeking to fill roles as data scientists or analysts, we will discuss the data science master’s degree in detail.
Docker - Containerized, reproducible workflows
0
Docker allows for containerization of any task - basically a smaller, scalable version of a virtual machine. This is very useful when transferring work across computing environments, as it ensures reproducibility.
fast.ai
0
Fastai offers many tools to people working with machine learning and artifical intelligence including tutorials on PyTorch in addition to their own library built on PyTorch, news articles, and other resources to dive into this realm.
Setting up PyFR flow solver on clusters
0
These instructions were executed on the FASTER and Grace cluster computing facilities at Texas A&M University. However, the process can be applied to other clusters with similar environments. For local installation, please refer to the PyFR documentation.
Please note that these instructions were valid at the time of writing. Depending on the time you're executing these, the versions of the modules may need to be updated.
1. Loading Modules
The first step involves loading pre-installed software libraries required for PyFR. Execute the following commands in your terminal to load these modules:
module load foss/2022b
module load libffi/3.4.4
module load OpenSSL/1.1.1k
module load METIS/5.1.0
module load HDF5/1.13.1
2. Python Installation from Source
Choose a location for Python 3.11.1 installation, preferably in a .local directory. Navigate to the directory containing the Python 3.11.1 source code. Then configure and install Python:
cd $INSTALL/Python-3.11.1/
./configure --prefix=$LOCAL --enable-shared --with-system-ffi --with-openssl=/sw/eb/sw/OpenSSL/1.1.1k-GCCcore-11.2.0/ PKG_CONFIG_PATH=$LOCAL/pkgconfig LDFLAGS=/usr/lib64/libffi.so.6.0.2
make clean; make -j20; make install;
3. Virtual Environment Setup
A virtual environment allows you to isolate Python packages for this project from others on your system. Create and activate a virtual environment using:
pip3.11 install virtualenv
python3.11 -m venv pyfr-venv
. pyfr-venv/bin/activate
4. Install PyFR Dependencies
Several Python packages are required for PyFR. Install these packages using the following commands:
pip3 install --upgrade pip
pip3 install --no-cache-dir wheel
pip3 install --no-cache-dir botorch pandas matplotlib pyfr
pip3 uninstall -y pyfr
5. Install PyFR from Source
Finally, navigate to the directory containing the PyFR source code, and then install PyFR:
cd /scratch/user/sambit98/github/PyFR/
python3 setup.py develop
Congratulations! You've successfully set up PyFR on the FASTER and Grace cluster computing facilities. You should now be able to use PyFR for your computational fluid dynamics simulations.
Implementing Markov Processes with Julia
0
The following link provides an easy method of implementing Markov Decision Processes (MDP) in the Julia computing language. MDPs are a class of algorithms designed to handle stochastic situations where the actor has some level of control. For example, used at a low level, MDPs can be used to control an inverted pendulum, but applied in higher level decision making the can also decide when to take evasive action in air traffic management. MDPs can also be extended to the partially observable domain to form the Partially Observable Markov Decision Process (POMDP). This link contains a wealth of information to show one can easily implement basic POMDP and MDP algorithms and apply well known online and offline solvers.
Examples of Thrust code for GPU Parallelization
0
Some examples for writing Thrust code. To compile, download the CUDA compiler from NVIDIA. This code was tested with CUDA 9.2 but is likely compatible with other versions. Before compiling change extension from thrust_ex.txt to thrust_ex.cu. Any code on the device (GPU) that is run through a Thrust transform is automatically parallelized on the GPU. Host (CPU) code will not be. Thrust code can also be compiled to run on a CPU for practice.
Developer Stories Podcast
0
As developers, we get excited to think about challenging problems. When you ask us what we are working on, our eyes light up like children in a candy store. So why is it that so many of our developer and software origin stories are not told? How did we get to where we are today, and what did we learn along the way? This podcast aims to look “Behind the Scenes of Tech’s Passion Projects and People.” We want to know your developer story, what you have built, and why. We are an inclusive community - whatever kind of institution or country you hail from, if you are passionate about software and technology you are welcome!
Research Security Operations Center at IU
0
The NSF-funded ResearchSOC helps make scientific computing resilient to cyberattacks and capable of supporting trustworthy, productive research through operational cybersecurity services, training, and information sharing necessary to a community as unique and variable as research and education (R&E).
ResearchSOC is a service offering from Indiana University's OmniSOC.
Resource to active inference
0
Active inference is an emerging study field in machine learning and computational neuroscience. This website in particular introduces "active inference institute", which has established a couple of years ago, and contains a wide variety of resources for understanding the theory of active inference and for participating a worldwide active inference community.
ACCESS KB Guide - Expanse
0
Expanse at SDSC is a cluster designed by Dell and SDSC delivering 5.16 peak petaflops, and offers Composable Systems and Cloud Bursting. This documentation describes how to use the Expanse cluster with some specific information for people with ACCESS accounts.
What are LSTMs?
0
This reading will explain what a long short-term memory neural network is. LSTMs are a type of neural networks that rely on both past and present data to make decisions about future data. It relies on loops back to previous data to make such decisions. This makes LSTMs very good for predicting time-dependent behavior.
FSL Lectures
0
This is the official University of Oxford FSL group lecture page. This includes information on upcoming and past courses (online and in-person), as well as lecture materials. Available lecture materials includes slides and recordings on using FSL, MR physics, and applications of imaging data.
marimo | a next generation python notebook
0
Introduction seminar for new reactive python notebook from marimo ambassador.
Git Branching Workflow and Maneuvers
0
A couple of resources that:
1.) Presents and defends a git branching workflow for stable collaborative git based projects. ("A Successful Git Branching Model")
2.) Maps "What do you want to do?" to the commands necessary to accomplish it. ("Git Flight Rules")
InsideHPC
0
InsideHPC is an informational site offers videos, research papers, articles, and other resources focused on machine learning and quantum computing among other topics within high performance computing.