Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
Attention, Transformers, and LLMs: a hands-on introduction in Pytorch
1
This workshop focuses on developing an understanding of the fundamentals of attention and the transformer architecture so that you can understand how LLMs work and use them in your own projects.
PyTorch for Deep Learning and Natural Language Processing
1
PyTorch is a Python library that supports accelerated GPU processing for Machine Learning and Deep Learning. In this tutorial, I will teach the basics of PyTorch from scratch. I will then explore how to use it for some ML projects such as Neural Networks, Multi-layer perceptrons (MLPs), Sentiment analysis with RNN, and Image Classification with CNN.
Introduction to Deep Learning in Pytorch
1
This workshop series introduces the essential concepts in deep learning and walks through the common steps in a deep learning workflow from data loading and preprocessing to training and model evaluation. Throughout the sessions, students participate in writing and executing simple deep learning programs using Pytorch – a popular Python library for developing, training, and deploying deep learning models.
Introduction to Python for Digital Humanities and Computational Research
1
This documentation contains introductory material on Python Programming for Digital Humanities and Computational Research. This can be a go-to material for a beginner trying to learn Python programming and for anyone wanting a Python refresher.
Leveraging AI in Generative Assets and Environments for Play: Insights from the English Department's Digital Media Lab
1
In this presentation, I will explore the recent advancements in AI-driven production of 3D-generative assets and environments, particularly focusing on their application in creating immersive, playful experiences. Platforms such as ChatGPT, Suno, and Speechify have ushered in a new era of digital creativity, facilitating the development of environments that not only entertain but also serve educational purposes. This session will delve into how these technologies are integrated into academic settings, specifically through a case study of the English Department's Digital Media Lab, known as Tech/Tech, which opened in 2022.
ACCESS HPC Workshop Series
1
Monthly workshops sponsored by ACCESS on a variety of HPC topics organized by Pittsburgh Supercomputing Center (PSC). Each workshop will be telecast to multiple satellite sites and workshop materials are archived.
What is fairness in ML?
0
This article discusses the importance of fairness in machine learning and provides insights into how Google approaches fairness in their ML models.
The article covers several key topics:
Introduction to fairness in ML: It provides an overview of why fairness is essential in machine learning systems, the potential biases that can arise, and the impact of biased models on different communities.
Defining fairness: The article discusses various definitions of fairness, including individual fairness, group fairness, and disparate impact. It explains the challenges in achieving fairness due to trade-offs and the need for thoughtful considerations.
Addressing bias in training data: It explores how biases can be present in training data and offers strategies to identify and mitigate these biases. Techniques like data preprocessing, data augmentation, and synthetic data generation are discussed.
Fairness in ML algorithms: The article examines the potential biases that can arise from different machine learning algorithms, such as classification and recommendation systems. It highlights the importance of evaluating and monitoring models for fairness throughout their lifecycle.
Fairness tools and resources: It showcases various tools and resources available to practitioners and developers to help measure, understand, and mitigate bias in machine learning models. Google's TensorFlow Extended (TFX) and What-If Tool are mentioned as examples.
Google's approach to fairness: The article highlights Google's commitment to fairness and the steps they take to address fairness challenges in their ML models. It mentions the use of fairness indicators, ongoing research, and partnerships to advance fairness in AI.
Overall, the article provides a comprehensive overview of fairness in machine learning and offers insights into Google's approach to building fair ML models.
What are LSTMs?
0
This reading will explain what a long short-term memory neural network is. LSTMs are a type of neural networks that rely on both past and present data to make decisions about future data. It relies on loops back to previous data to make such decisions. This makes LSTMs very good for predicting time-dependent behavior.
Intro to Machine Learning on HPC
0
This tutorial introduces machine learning on high performance computing (HPC) clusters. While it focuses on the HPC clusters at The University of Arizona, the content is generic enough that it can be used by students from other institutions.
Framework to help in scaling Machine Learning/Deep Learning/AI/NLP Models to Web Application level
0
This framework will help in scaling Machine Learning/Deep Learning/Artificial Intelligence/Natural Language Processing Models to Web Application level almost without any time.
Horovod: Distributed deep learning training framework
0
Horovod is a distributed deep learning training framework. Using horovod, a single-GPU training script can be scaled to train across many GPUs in parallel. The library supports popular deep learning framework such as TensorFlow, Keras, PyTorch, and Apache MXNet.
Scikit-Learn: Easy Machine Learning and Modeling
0
Scikit-learn is free software machine learning library for Python. It has a variety of features you can use on data, from linear regression classifiers to xg-boost and random forests. It is very useful when you want to analyze small parts of data quickly.
Reinforcement Learning For Beginners with Python
0
This course takes through the fundamentals required to get started with reinforcement learning with Python, OpenAI Gym and Stable Baselines. You'll be able to build deep learning powered agents to solve a varying number of RL problems including CartPole, Breakout and CarRacing as well as learning how to build your very own/custom environment!
Handwritten Digits Tutorial in PyTorch
0
This tutorial is essentially the "hello world" of image recognition and feed-forward neural network (using PyTorch). Using the MNIST database (filled within images of handwritten digits), the tutorial will instruct how to build a feed-forward neural network that can recognize handwritten digits. A solid understanding of feed-forward and back-propagation is recommended.
Automated Machine Learning Book
0
The authoritative book on automated machine learning, which allows practitioners without ML expertise to develop and deploy state-of-the-art machine learning approaches. Describes the background of techniques used in detail, along with tools that are available for free.
Representation Learning in Deep Learning
0
Representation learning is a fundamental concept in machine learning and artificial intelligence, particularly in the field of deep learning. At its core, representation learning involves the process of transforming raw data into a form that is more suitable for a specific task or learning objective. This transformation aims to extract meaningful and informative features or representations from the data, which can then be used for various tasks like classification, clustering, regression, and more.
Docker - Containerized, reproducible workflows
0
Docker allows for containerization of any task - basically a smaller, scalable version of a virtual machine. This is very useful when transferring work across computing environments, as it ensures reproducibility.
Official Documentation for PyTorch and NumPy
0
The official documentation for PyTorch, a machine learning tensor-based framework, and NumPy, which allows for support for ndarrays which is useful to make tensors when implementing NNs. Both libraries can be installed with pip.
Quick and Robust Data Augmentation with Albumentations Library
0
Data augmentation is a crucial step in the pipeline for image classification with deep learning. Albumentations is an extremely versatile Python library that can be used to easily augment images. Transformations include rotations, flips, downscaling, distortions, blurs, and many more.
Citation:
Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. Albumentations: Fast and Flexible Image Augmentations. Information. 2020; 11(2):125. https://doi.org/10.3390/info11020125
A survey on datasets for fairness-aware machine learning
0
The research paper provides an overview of various datasets that have been used to study fairness in machine learning. It discusses the characteristics of these datasets, such as their size, diversity, and the fairness-related challenges they address. The paper also examines the different domains and applications covered by these datasets.
Numpy - a Python Library
0
Numpy is a python package that leverages types and compiled C code to make many math operations in Python efficient. It is especially useful for matrix manipulation and operations.
PyTorch Introduction
0
This is a very barebones introduction to the PyTorch framework used to implement machine learning. This tutorial implements a feed-forward neural network and is taught completely asynchronously through Stanford University. A good start after learning the theory behind feed-forward neural networks.
Neural Networks in Julia
0
Making a neural network has never been easier! The following link directs users to the Flux.jl package, the easiest way of programming a neural network using the Julia programming language. Julia is the fastest growing software language for AI/ML and this package provides a faster alternative to Python's TensorFlow and PyTorch with a 100% Julia native programming and GPU support.
Fairness and Machine Learning
0
The "Fairness and Machine Learning" book offers a rigorous exploration of fairness in ML and is suitable for researchers, practitioners, and anyone interested in understanding the complexities and implications of fairness in machine learning.
Time-Series LSTMs Python Walkthrough
0
A walkthrough (with a Google Colab link) on how to implement your own LSTM to observe time-dependent behavior.