Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
Introduction to Deep Learning in Pytorch
1
This workshop series introduces the essential concepts in deep learning and walks through the common steps in a deep learning workflow from data loading and preprocessing to training and model evaluation. Throughout the sessions, students participate in writing and executing simple deep learning programs using Pytorch – a popular Python library for developing, training, and deploying deep learning models.
PyTorch for Deep Learning and Natural Language Processing
1
PyTorch is a Python library that supports accelerated GPU processing for Machine Learning and Deep Learning. In this tutorial, I will teach the basics of PyTorch from scratch. I will then explore how to use it for some ML projects such as Neural Networks, Multi-layer perceptrons (MLPs), Sentiment analysis with RNN, and Image Classification with CNN.
Leveraging AI in Generative Assets and Environments for Play: Insights from the English Department's Digital Media Lab
1
In this presentation, I will explore the recent advancements in AI-driven production of 3D-generative assets and environments, particularly focusing on their application in creating immersive, playful experiences. Platforms such as ChatGPT, Suno, and Speechify have ushered in a new era of digital creativity, facilitating the development of environments that not only entertain but also serve educational purposes. This session will delve into how these technologies are integrated into academic settings, specifically through a case study of the English Department's Digital Media Lab, known as Tech/Tech, which opened in 2022.
ACCESS HPC Workshop Series
1
Monthly workshops sponsored by ACCESS on a variety of HPC topics organized by Pittsburgh Supercomputing Center (PSC). Each workshop will be telecast to multiple satellite sites and workshop materials are archived.
Attention, Transformers, and LLMs: a hands-on introduction in Pytorch
1
This workshop focuses on developing an understanding of the fundamentals of attention and the transformer architecture so that you can understand how LLMs work and use them in your own projects.
Automated Machine Learning Book
0
The authoritative book on automated machine learning, which allows practitioners without ML expertise to develop and deploy state-of-the-art machine learning approaches. Describes the background of techniques used in detail, along with tools that are available for free.
PyTorch Introduction
0
This is a very barebones introduction to the PyTorch framework used to implement machine learning. This tutorial implements a feed-forward neural network and is taught completely asynchronously through Stanford University. A good start after learning the theory behind feed-forward neural networks.
Time-Series LSTMs Python Walkthrough
0
A walkthrough (with a Google Colab link) on how to implement your own LSTM to observe time-dependent behavior.
Feed Forward NNs and Gradient Descent
0
Feed-forward neural networks are a simple type of network that simply rely on data to be "fed-forward" through a series of layers that makes decisions on how to categorize datum. Gradient descent is a type of optimization tool that is often used to train machines. These two areas in ML are good starting points and are the easiest types of neural network/optimization to understand.
Neural Networks in Julia
0
Making a neural network has never been easier! The following link directs users to the Flux.jl package, the easiest way of programming a neural network using the Julia programming language. Julia is the fastest growing software language for AI/ML and this package provides a faster alternative to Python's TensorFlow and PyTorch with a 100% Julia native programming and GPU support.
Active inference textbook
0
This textbook is the first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines including computational neurosciences, machine learning, artificial intelligence, and robotics. It was published in 2022 and it's open access at this time. The contents in this textbook should be educational to those who want to understand how the free energy principle is applied to the normative behavior of living organisms and who want to widen their knowledge of sequential decision making under uncertainty.
What are LSTMs?
0
This reading will explain what a long short-term memory neural network is. LSTMs are a type of neural networks that rely on both past and present data to make decisions about future data. It relies on loops back to previous data to make such decisions. This makes LSTMs very good for predicting time-dependent behavior.
MNIST Handwritten Digits Tutorial
0
This tutorial will give you an introduction to neural networks using the ever-famous MNIST handwritten digits database!
Presented by Robin Hwang.
The Theory Behind Neural Networks (Very Simplified)
0
This video by the YouTube channel 3Blue1Brown provides a very simplified introduction to the theory behind neural networks. This tutorial is perfect for those that don't have much linear algebra or machine learning background and are eager to step into the realm of ML!
Neocortex Documentation
0
Neocortex is a new supercomputing cluster at the Pittsburgh Supercomputing Center (PSC) that features groundbreaking AI hardware from Cerebras Systems.
Handwritten Digits Tutorial in PyTorch
0
This tutorial is essentially the "hello world" of image recognition and feed-forward neural network (using PyTorch). Using the MNIST database (filled within images of handwritten digits), the tutorial will instruct how to build a feed-forward neural network that can recognize handwritten digits. A solid understanding of feed-forward and back-propagation is recommended.
Intro to Machine Learning on HPC
0
This tutorial introduces machine learning on high performance computing (HPC) clusters. While it focuses on the HPC clusters at The University of Arizona, the content is generic enough that it can be used by students from other institutions.
Representation Learning in Deep Learning
0
Representation learning is a fundamental concept in machine learning and artificial intelligence, particularly in the field of deep learning. At its core, representation learning involves the process of transforming raw data into a form that is more suitable for a specific task or learning objective. This transformation aims to extract meaningful and informative features or representations from the data, which can then be used for various tasks like classification, clustering, regression, and more.
Scikit-Learn: Easy Machine Learning and Modeling
0
Scikit-learn is free software machine learning library for Python. It has a variety of features you can use on data, from linear regression classifiers to xg-boost and random forests. It is very useful when you want to analyze small parts of data quickly.
Framework to help in scaling Machine Learning/Deep Learning/AI/NLP Models to Web Application level
0
This framework will help in scaling Machine Learning/Deep Learning/Artificial Intelligence/Natural Language Processing Models to Web Application level almost without any time.
Official Documentation for PyTorch and NumPy
0
The official documentation for PyTorch, a machine learning tensor-based framework, and NumPy, which allows for support for ndarrays which is useful to make tensors when implementing NNs. Both libraries can be installed with pip.
UCLA Extended Reality (XR) collaboration resources and Workshop
0
Comprehensive Extended Reality (XR) collaboration resources for building a high performance extended reality (XR), augmented reality (AR), virtual reality (VR) and mixed reality campus teams. The tags set are a small subset of the the topics covered.
Solving differential equations with Physics-informed Neural Network
0
Differential equations, the backbone of countless physical phenomena, have traditionally been solved using numerical methods or analytical techniques. However, the advent of deep learning introduces an intriguing alternative: Physics-Informed Neural Networks (PINNs). By leveraging the representational power of neural networks and integrating physical laws (like differential equations), PINNs offer a novel approach to solving complex problems. This guide walks through an implementation of a PINN to solve DEs such as the logistic equation.