Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
Data Visualization tools for Python
1
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. It makes analyzing and presenting your data extremely easy and works with Python which many people already know.
Useful R Packages for Data Science and Statistics
1
This Udacity article listed the most frequently used R packages for data science and statistics. For each package, the article provided the link to its official documentation. It will be a great start point if you want to start your data science journey in R.
ACCESS Pegasus Documentation
1
The documentation provides an overview of using Pegasus, a workflow management system, on ACCESS resources for high throughput computing (HTC) workloads, covering logging in, workflow creation, resource configuration, and monitoring options.
Open OnDemand Documentation Repository
1
This is the main documentation repo for the Open OnDemand Portal which enables researchers to access HPC resources from a familiar web interface.
GIS: Geocoding Services
1
Geocoding is the process of taking a street address and converting it into coordinates that can be plotted on a map. This conversion typically requires an API call to a remote server hosted by an organization/institution. The remote server will take the address attributes provided by you and the remote server will compare it to the data it contains and return a best estimate on the coordinates for that location.
There are many geocoding services available with different world coverages, quality of result, and set different rate limits for access. For R, a package called "tidygeocoder" provides an easy way to connect to these different services. As an additional benefit, their documentation provides a good summary of geocoding services available and links to their documentation. The link to the documentation for gecoding services accessible by "tidygeocoder" is provided below.
For Python, geopy package is a library that provides connection to various geocoding services. The link to the documentation for this package is also included below.
DARWIN Documentation Pages
1
DARWIN (Delaware Advanced Research Workforce and Innovation Network) is a big data and high performance computing system designed to catalyze Delaware research and education
Gesture Classifier Model using MediaPipe
0
MediaPipe is Google's open-source framework for building multimodal (e.g., video, audio, etc.) machine learning pipelines. It is highly efficient and versatile, making it perfect for tasks like gesture recognition.
This is a tutorial on how to make a custom model for gesture recognition tasks based on the Google MediaPipe API. This tutorial is specifically for video-playback, though could be generalized to image and live-video feed recognition.
Guide to building AirSim on Linux machines
0
This article provides step-by-step instructions on how to build AirSim, a simulator for autonomous vehicles, on Linux. It includes both Docker and host machine setup options, along with details on building Unreal Engine, AirSim, and the Unreal environment. It also provides guidance on how to use AirSim once it is set up.
Factor Graphs and the Sum-Product Algorithm
0
A tutorial paper that presents a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes either exactly or approximately various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms
Machine Learning in Astrophysics
0
Machine learning is becoming increasingly important in field with large data such as astrophysics. AstroML is a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, matplotlib, and astropy allowing for a range of statistical and machine learning routines to analyze astronomical data in Python. In particular, it has loaders for many open astronomical datasets with examples on how to visualize such complicated and large datasets.
ACCESS Guide (originally given at Duke OIT)
0
A guide for Duke OIT on how to advise users on using ACCESS and allocation credits to jetstream 2 for Duke University members. This can be used for non Duke members. Assumes the reader has basic knowledge of ACCESS.
Rockfish at Johns Hopkins University
0
Resources and User Guide available at Rockfish
What is fairness in ML?
0
This article discusses the importance of fairness in machine learning and provides insights into how Google approaches fairness in their ML models.
The article covers several key topics:
Introduction to fairness in ML: It provides an overview of why fairness is essential in machine learning systems, the potential biases that can arise, and the impact of biased models on different communities.
Defining fairness: The article discusses various definitions of fairness, including individual fairness, group fairness, and disparate impact. It explains the challenges in achieving fairness due to trade-offs and the need for thoughtful considerations.
Addressing bias in training data: It explores how biases can be present in training data and offers strategies to identify and mitigate these biases. Techniques like data preprocessing, data augmentation, and synthetic data generation are discussed.
Fairness in ML algorithms: The article examines the potential biases that can arise from different machine learning algorithms, such as classification and recommendation systems. It highlights the importance of evaluating and monitoring models for fairness throughout their lifecycle.
Fairness tools and resources: It showcases various tools and resources available to practitioners and developers to help measure, understand, and mitigate bias in machine learning models. Google's TensorFlow Extended (TFX) and What-If Tool are mentioned as examples.
Google's approach to fairness: The article highlights Google's commitment to fairness and the steps they take to address fairness challenges in their ML models. It mentions the use of fairness indicators, ongoing research, and partnerships to advance fairness in AI.
Overall, the article provides a comprehensive overview of fairness in machine learning and offers insights into Google's approach to building fair ML models.
Optimizing Research Workflows - A Documentation of Snakemake
0
Snakemake is a powerful and versatile workflow management system that simplifies the creation, execution, and management of data analysis pipelines. It uses a user-friendly, Python-based language to define workflows, making it particularly valuable for automating and reproducibly managing complex computational tasks in research and data analysis.
Anvil Documentation
0
Documentation for Anvil, a powerful supercomputer at Purdue University that provides advanced computing capabilities to support a wide range of computational and data-intensive research spanning from traditional high-performance computing to modern artificial intelligence applications.
Paraview UArizona HPC links (advanced)
0
These links take you to visualization resources supported by the University of Arizona's HPC visualization consultant ([rtdatavis.github.io](http://rtdatavis.github.io/)). The following links are specific to the Paraview program and the workflows that have been used my researchers at the U of Arizona. These links are distinct from the others posted in the beginner paraview access ci links from the University of Arizona in that they are for more complex workflows. The links included explain how to use the terminal with paraview (pvpython), and the steps to leverage HPC resources for headless batch rendering. The batch rendering tutorial is significantly more complex than the others so if you find yourself stuck please post on the https://ask.cyberinfrastructure.org/ and I will try to troubleshoot with you.
Contributing cycles to the Open Science Grid
0
EasyBuild Documentation
0
EasyBuild is a software installation framework that allows administrators to easily build and install software on high-performance computing (HPC) systems. It supports a wide range of software packages, toolchains, and compilers.
Supported software are found in the EasyConfigs repository, one of several resositories in EasyBuild project.
AHPCC documentary
0
This link is a documentary website to use AHPCC.
Numba: Compiler for Python
0
Numba is a Python compiler designed for accelerating numerical and array operations, enabling users to enhance their application's performance by writing high-performance functions in Python itself. It utilizes LLVM to transform pure Python code into optimized machine code, achieving speeds comparable to languages like C, C++, and Fortran. Noteworthy features include dynamic code generation during import or runtime, support for both CPU and GPU hardware, and seamless integration with the Python scientific software ecosystem, particularly Numpy.
Official Documentation of VisIt
0
VisIt is a prominent open-source, interactive parallel visualization and graphical analysis tool predominantly used for viewing scientific data. Its GitHub repository offers a detailed insight into the software's source code, documentation, and contribution guidelines. In particular, it offers useful examples on how it
ACCESS KB Guide - DELTA
0
NCSA is the home of Delta, a computing and data resource that balances cutting-edge graphics processor and CPU architectures with a non-POSIX file system with a POSIX-like interface. Delta allows applications to reap the benefits of modern file systems without rewriting code.
Moving-Lid-Driven Flow Simulation by Finite Difference Method
0
The listed repository contains code written in C++ to model the flow inside a cavity with a lid moving above from left to right by discretizing incompressible N-S equations with finite difference method. For the governing equations, artificial viscosity has been considered to increase the stability. In terms of solving the resulted algebraic equation system, both the Point Jacobi Method and Symmetric Gauss Seidel methods have been used for the iteration process.
Intro to Statistical Computing with Stan
0
The Stan language is used to specify a (Bayesian) statistical model with an imperative program calculating the log probability density function. Here are some useful links to start your exploration of this statistical programming language, and a Python interface to Stan.
Spack Documentation
0
Spack is a package manager for supercomputers that can help administrators install scientific software and libraries for multiple complex software stacks.