Knowledge Base Resources
These resources are contributed by researchers, facilitators, engineers, and HPC admins. Please upvote resources you find useful!
DARWIN Documentation Pages
1
DARWIN (Delaware Advanced Research Workforce and Innovation Network) is a big data and high performance computing system designed to catalyze Delaware research and education
Data Visualization tools for Python
1
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. It makes analyzing and presenting your data extremely easy and works with Python which many people already know.
Useful R Packages for Data Science and Statistics
1
This Udacity article listed the most frequently used R packages for data science and statistics. For each package, the article provided the link to its official documentation. It will be a great start point if you want to start your data science journey in R.
ACCESS Pegasus Documentation
1
The documentation provides an overview of using Pegasus, a workflow management system, on ACCESS resources for high throughput computing (HTC) workloads, covering logging in, workflow creation, resource configuration, and monitoring options.
Open OnDemand Documentation Repository
1
This is the main documentation repo for the Open OnDemand Portal which enables researchers to access HPC resources from a familiar web interface.
GIS: Geocoding Services
1
Geocoding is the process of taking a street address and converting it into coordinates that can be plotted on a map. This conversion typically requires an API call to a remote server hosted by an organization/institution. The remote server will take the address attributes provided by you and the remote server will compare it to the data it contains and return a best estimate on the coordinates for that location.
There are many geocoding services available with different world coverages, quality of result, and set different rate limits for access. For R, a package called "tidygeocoder" provides an easy way to connect to these different services. As an additional benefit, their documentation provides a good summary of geocoding services available and links to their documentation. The link to the documentation for gecoding services accessible by "tidygeocoder" is provided below.
For Python, geopy package is a library that provides connection to various geocoding services. The link to the documentation for this package is also included below.
Singularity/Apptainer User Manuals
0
Singularity/Apptainer is a free and open-source container platform that allows users to build and run containers on high performance computing resources.
SingularityCE is the community edition of Singularity maintained by Sylabs, a company that also offers commercial Singularity products and services.
Apptainer is a fork of Singularity, maintained by the Linux foundation, a community of developers and users who are passionate about open source software.
QGIS Processing Executor
0
Running QGIS tools from the command line
PetIGA, an open-source code for isogeometric analysis
0
This documentation provides an overview of the PetIGA framework, an open source code for solving multiphysics problems with isogeometric analysis. The documentation covers some simple tutorials and examples to help users get started with the framework and apply it to solve real-world problems in continuum mechanics, including solid and fluid mechanics.
Representation Learning in Deep Learning
0
Representation learning is a fundamental concept in machine learning and artificial intelligence, particularly in the field of deep learning. At its core, representation learning involves the process of transforming raw data into a form that is more suitable for a specific task or learning objective. This transformation aims to extract meaningful and informative features or representations from the data, which can then be used for various tasks like classification, clustering, regression, and more.
Running Particle-in-Cell Simulations on HPC
0
WarpX is an advanced particle-in-cell code used to model particle accelerators, which needs to be run on HPC. This website contains the tutorial on how to build WarpX on various HPC systems such as NERSC along with examples on how to set up post-processing/visualization tools for different physics cases.
Vulkan Support Survey across Systems
0
It's not uncommon to see beautiful visualizations in HPC center galleries, but the majority of these are either rendered off the HPC or created using programs that run on OpenGL or custom rasterization techniques. To put it simply the next generation of graphics provided by OpenGL's successor Vulkan is strangely absent in the super computing world. The aim of this survey of available resources is to determine the systems that can support Vulkan workflows and programs. This will assist users in getting past some of the first hurdles in using Vulkan in HPC contexts.
Fairness and Machine Learning
0
The "Fairness and Machine Learning" book offers a rigorous exploration of fairness in ML and is suitable for researchers, practitioners, and anyone interested in understanding the complexities and implications of fairness in machine learning.
Samtools Documentation
0
Samtools is a suite of programs for interacting with high-throughput sequencing data, especially in the SAM/BAM format. It offers various utilities for processing, analyzing, and managing sequence data generated from next-generation sequencing (NGS) experiments. Samtools is widely used in bioinformatics and genomics research for tasks such as read alignment, variant calling, and data manipulation.
Pandas - Python
0
pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. It lets you store data in easy to manage and display data frames, with column names and datatypes.
Guide to building AirSim on Linux machines
0
This article provides step-by-step instructions on how to build AirSim, a simulator for autonomous vehicles, on Linux. It includes both Docker and host machine setup options, along with details on building Unreal Engine, AirSim, and the Unreal environment. It also provides guidance on how to use AirSim once it is set up.
Gesture Classifier Model using MediaPipe
0
MediaPipe is Google's open-source framework for building multimodal (e.g., video, audio, etc.) machine learning pipelines. It is highly efficient and versatile, making it perfect for tasks like gesture recognition.
This is a tutorial on how to make a custom model for gesture recognition tasks based on the Google MediaPipe API. This tutorial is specifically for video-playback, though could be generalized to image and live-video feed recognition.
Factor Graphs and the Sum-Product Algorithm
0
A tutorial paper that presents a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes either exactly or approximately various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms
Machine Learning in Astrophysics
0
Machine learning is becoming increasingly important in field with large data such as astrophysics. AstroML is a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, matplotlib, and astropy allowing for a range of statistical and machine learning routines to analyze astronomical data in Python. In particular, it has loaders for many open astronomical datasets with examples on how to visualize such complicated and large datasets.
Rockfish at Johns Hopkins University
0
Resources and User Guide available at Rockfish
ACCESS Guide (originally given at Duke OIT)
0
A guide for Duke OIT on how to advise users on using ACCESS and allocation credits to jetstream 2 for Duke University members. This can be used for non Duke members. Assumes the reader has basic knowledge of ACCESS.
What is fairness in ML?
0
This article discusses the importance of fairness in machine learning and provides insights into how Google approaches fairness in their ML models.
The article covers several key topics:
Introduction to fairness in ML: It provides an overview of why fairness is essential in machine learning systems, the potential biases that can arise, and the impact of biased models on different communities.
Defining fairness: The article discusses various definitions of fairness, including individual fairness, group fairness, and disparate impact. It explains the challenges in achieving fairness due to trade-offs and the need for thoughtful considerations.
Addressing bias in training data: It explores how biases can be present in training data and offers strategies to identify and mitigate these biases. Techniques like data preprocessing, data augmentation, and synthetic data generation are discussed.
Fairness in ML algorithms: The article examines the potential biases that can arise from different machine learning algorithms, such as classification and recommendation systems. It highlights the importance of evaluating and monitoring models for fairness throughout their lifecycle.
Fairness tools and resources: It showcases various tools and resources available to practitioners and developers to help measure, understand, and mitigate bias in machine learning models. Google's TensorFlow Extended (TFX) and What-If Tool are mentioned as examples.
Google's approach to fairness: The article highlights Google's commitment to fairness and the steps they take to address fairness challenges in their ML models. It mentions the use of fairness indicators, ongoing research, and partnerships to advance fairness in AI.
Overall, the article provides a comprehensive overview of fairness in machine learning and offers insights into Google's approach to building fair ML models.
Optimizing Research Workflows - A Documentation of Snakemake
0
Snakemake is a powerful and versatile workflow management system that simplifies the creation, execution, and management of data analysis pipelines. It uses a user-friendly, Python-based language to define workflows, making it particularly valuable for automating and reproducibly managing complex computational tasks in research and data analysis.
Paraview UArizona HPC links (advanced)
0
These links take you to visualization resources supported by the University of Arizona's HPC visualization consultant ([rtdatavis.github.io](http://rtdatavis.github.io/)). The following links are specific to the Paraview program and the workflows that have been used my researchers at the U of Arizona. These links are distinct from the others posted in the beginner paraview access ci links from the University of Arizona in that they are for more complex workflows. The links included explain how to use the terminal with paraview (pvpython), and the steps to leverage HPC resources for headless batch rendering. The batch rendering tutorial is significantly more complex than the others so if you find yourself stuck please post on the https://ask.cyberinfrastructure.org/ and I will try to troubleshoot with you.
Anvil Documentation
0
Documentation for Anvil, a powerful supercomputer at Purdue University that provides advanced computing capabilities to support a wide range of computational and data-intensive research spanning from traditional high-performance computing to modern artificial intelligence applications.