Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
The Carpentries
4
We teach foundational coding and data science skills to researchers worldwide.
HPC University
3
A comprehensive list of training resources from the HPC University. HPCU is a virtual organization whose primary goal is to provide a cohesive, persistent, and sustainable on-line environment to share educational and training materials for a continuum of high performance computing environments that span desktop computing capabilities to the highest-end of computing facilities offered by HPC centers.
An Introduction to Cryptography with Python
2
This comprehensive workshop is designed to guide participants through the world of cryptography, from foundational concepts to advanced implementations. Starting with the basics of encryption, decryption, and hashing, the workshop discusses real-world applications like SSL, blockchain, and digital signatures. Interactive Python-based coding examples, such as symmetric and asymmetric encryption, will provide hands-on experience. Participants will also learn to identify cryptographic vulnerabilities and perform attacks like length extension. Finally, the workshop also explores future trends such as quantum cryptography and zero-knowledge proofs, providing participants with the knowledge to apply cryptography in securing modern digital systems. Ideal for beginners and intermediate learners alike, this workshop is a step-by-step journey into mastering cryptographic principles and practices.
Open OnDemand
2
Open OnDemand is an easy-to-use web portal that lets students, researchers, and industry professionals use supercomputers from anywhere. It is installed on supercomputing resources at hundreds of sites. By eliminating the need for client software or command-line interface, Open OnDemand empowers users of all skill levels and significantly speeds up the time to their first computing.
Open OnDemand Documentation Repository
1
This is the main documentation repo for the Open OnDemand Portal which enables researchers to access HPC resources from a familiar web interface.
Data Visualization tools for Python
1
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. It makes analyzing and presenting your data extremely easy and works with Python which many people already know.
Attention, Transformers, and LLMs: a hands-on introduction in Pytorch
1
This workshop focuses on developing an understanding of the fundamentals of attention and the transformer architecture so that you can understand how LLMs work and use them in your own projects.
DARWIN Documentation Pages
1
DARWIN (Delaware Advanced Research Workforce and Innovation Network) is a big data and high performance computing system designed to catalyze Delaware research and education
Useful R Packages for Data Science and Statistics
1
This Udacity article listed the most frequently used R packages for data science and statistics. For each package, the article provided the link to its official documentation. It will be a great start point if you want to start your data science journey in R.
ACCESS HPC Workshop Series
1
Monthly workshops sponsored by ACCESS on a variety of HPC topics organized by Pittsburgh Supercomputing Center (PSC). Each workshop will be telecast to multiple satellite sites and workshop materials are archived.
ACCESS Pegasus Documentation
1
The documentation provides an overview of using Pegasus, a workflow management system, on ACCESS resources for high throughput computing (HTC) workloads, covering logging in, workflow creation, resource configuration, and monitoring options.
HPC Carpentry
1
An HPC focused Carpentry community. Trainings include: HPC fundamentals, python, chapel, LAMMPS, parallelization with python, scaling studies, etc.
Introduction to Deep Learning in Pytorch
1
This workshop series introduces the essential concepts in deep learning and walks through the common steps in a deep learning workflow from data loading and preprocessing to training and model evaluation. Throughout the sessions, students participate in writing and executing simple deep learning programs using Pytorch – a popular Python library for developing, training, and deploying deep learning models.
Cornell Virtual Workshop
1
Cornell Virtual Workshop is a comprehensive training resource for high performance computing topics. The Cornell University Center for Advanced Computing (CAC) is a leader in the development and deployment of Web-based training programs. Our Cornell Virtual Workshop learning platform is designed to enhance the computational science skills of researchers, accelerate the adoption of new and emerging technologies, and broaden the participation of underrepresented groups in science and engineering. Over 350,000 unique visitors have accessed Cornell Virtual Workshop training on programming languages, parallel computing, code improvement, and data analysis. The platform supports learning communities around the world, with code examples from national systems such as Frontera, Stampede2, and Jetstream2.
GIS: Geocoding Services
1
Geocoding is the process of taking a street address and converting it into coordinates that can be plotted on a map. This conversion typically requires an API call to a remote server hosted by an organization/institution. The remote server will take the address attributes provided by you and the remote server will compare it to the data it contains and return a best estimate on the coordinates for that location.
There are many geocoding services available with different world coverages, quality of result, and set different rate limits for access. For R, a package called "tidygeocoder" provides an easy way to connect to these different services. As an additional benefit, their documentation provides a good summary of geocoding services available and links to their documentation. The link to the documentation for gecoding services accessible by "tidygeocoder" is provided below.
For Python, geopy package is a library that provides connection to various geocoding services. The link to the documentation for this package is also included below.
NCSA HPC Training Moodle
1
Self-paced tutorials on high-end computing topics such as parallel computing, multi-core performance, and performance tools. Other related topics include 'Cybersecurity for End Users' and 'Developing Webinar Training.' Some of the tutorials also offer digital badges. Many of these tutorials were previously offered on CI-Tutor. A list of open access training courses are provided below.
Parallel Computing on High-Performance Systems
Profiling Python Applications
Using an HPC Cluster for Scientific Applications
Debugging Serial and Parallel Codes
Introduction to MPI
Introduction to OpenMP
Introduction to Visualization
Introduction to Performance Tools
Multilevel Parallel Programming
Introduction to Multi-core Performance
Using the Lustre File System
Using Linux commands in a python script (and the difference between the subprocess and os python modules)
1
Learn how to use Linux commands in a python script. Specifically, learn how to use the subprocess and os modules in python to run shell commands (which run Linux commands) in a python script that is run on a cluster.
Enhanced Sampling for MD simulations
1
GDAL Multi-threading
0
Multi-threading guidance when using GDAL.
Neural Networks in Julia
0
Making a neural network has never been easier! The following link directs users to the Flux.jl package, the easiest way of programming a neural network using the Julia programming language. Julia is the fastest growing software language for AI/ML and this package provides a faster alternative to Python's TensorFlow and PyTorch with a 100% Julia native programming and GPU support.
Bash shell tutorial
0
Training materials for using the bash (and zsh) shell.
MATLAB bioinformatics toolbox
0
Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing (NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox functions, you can read genomic and proteomic data from standard file formats such as SAM, FASTA, CEL, and CDF, as well as from online databases such as the NCBI Gene Expression Omnibus and GenBank.
OnShape FeatureScripts: Custom features for everyone
0
OnShape FeatureScripts allow users to create their own features via OnShape's programming language. The user can make these as simple or complex as they need, and they can save tons of time for heavy OnShape users or complex projects!
PyTorch Introduction
0
This is a very barebones introduction to the PyTorch framework used to implement machine learning. This tutorial implements a feed-forward neural network and is taught completely asynchronously through Stanford University. A good start after learning the theory behind feed-forward neural networks.
DeepChem
0
DeepChem is an open-source library built on TensorFlow and PyTorch. It is helpful in applying machine learning algorithms to molecular data.