Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
Enhanced Sampling for MD simulations
1
MATLAB bioinformatics toolbox
0
Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing (NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox functions, you can read genomic and proteomic data from standard file formats such as SAM, FASTA, CEL, and CDF, as well as from online databases such as the NCBI Gene Expression Omnibus and GenBank.
MATLAB with other Programming Languages
0
MATLAB is a really useful tool for data analysis among other computational work. This tutorial takes you through using MATLAB with other programming languages including C, C++, Fortran, Java, and Python.
Benchmarking with a cross-platform open-source flow solver, PyFR
0
What is PyFR and how does it solve fluid flow problems?
PyFR is an open-source Computational Fluid Dynamics (CFD) solver that is based on Python and employs the high-order Flux Reconstruction technique. It effectively solves fluid flow problems by utilizing streaming architectures, making it suitable for complex fluid dynamics simulations.
How does PyFR achieve scalability on clusters with CPUs and GPUs?
PyFR achieves scalability by leveraging distributed memory parallelism through the Message Passing Interface (MPI). It implements persistent, non-blocking MPI requests using point-to-point (P2P) communication and organizes kernel calls to enable local computations while exchanging ghost states. This design approach allows PyFR to efficiently operate on clusters with heterogeneous architectures, combining CPUs and GPUs.
Why is PyFR valuable for benchmarking clusters?
PyFR's exceptional performance has been recognized by its selection as a finalist in the ACM Gordon Bell Prize for High-Performance Computing. It demonstrates strong-scaling capabilities by effectively utilizing low-latency inter-GPU communication and achieving strong-scaling on unstructured grids. PyFR has been successfully benchmarked with up to 18,000 NVIDIA K20X GPUs on Titan, showcasing its efficiency in handling large-scale simulations.
Scikit-Learn: Easy Machine Learning and Modeling
0
Scikit-learn is free software machine learning library for Python. It has a variety of features you can use on data, from linear regression classifiers to xg-boost and random forests. It is very useful when you want to analyze small parts of data quickly.
Building Anaconda Navigator applications
0
This tutorial explains how to create an Anaconda Navigator Application (app) for JupyterLab. It is intended for users of Windows, macOS, and Linux who want to generate an Anaconda Navigator app conda package from a given recipe. Prior knowledge of conda-build or conda recipes is recommended.
DeepChem
0
DeepChem is an open-source library built on TensorFlow and PyTorch. It is helpful in applying machine learning algorithms to molecular data.
marimo | a next generation python notebook
0
Introduction seminar for new reactive python notebook from marimo ambassador.
OpenMP and Multithreaded Jobs in GRASS
0
Techniques and support for multithreaded geospatial data processing in GRASS.
Docker - Containerized, reproducible workflows
0
Docker allows for containerization of any task - basically a smaller, scalable version of a virtual machine. This is very useful when transferring work across computing environments, as it ensures reproducibility.
AI powered VsCode Editor
0
**Cursor: The AI-Powered Code Editor**
Cursor is a cutting-edge, AI-first code editor designed to revolutionize the way developers write, debug, and understand code. Built upon the premise of pair-programming with artificial intelligence, Cursor harnesses the capabilities of advanced AI models to offer real-time coding assistance, bug detection, and code generation.
**How Cursor Benefits High-Performance Computing (HPC) Work:**
1. **Efficient Code Development:** With AI-assisted code generation, researchers and developers in the HPC realm can quickly write optimized code for simulations, data processing, or modeling tasks, reducing the time to deployment.
2. **Debugging Assistance:** Handling complex datasets and simulations often lead to intricate bugs. Cursor's capability to automatically investigate errors and determine root causes can save crucial time in the HPC workflow.
3. **Tailored Code Suggestions:** Cursor's AI provides context-specific code suggestions by understanding the entire codebase. For HPC applications where performance is paramount, this means receiving recommendations that align with optimization goals.
4. **Improved Code Quality:** With AI-driven bug scanning and linter checks, Cursor ensures that HPC codes are not only fast but also robust and free of common errors.
5. **Easy Integration:** Being a fork of VSCode, Cursor allows seamless migration, ensuring that developers working in HPC can swiftly integrate their existing VSCode setups and extensions.
In essence, for HPC tasks that demand speed, precision, and robustness, Cursor acts as an invaluable co-pilot, guiding developers towards efficient and optimized coding solutions.
It is free if you provide your own OPEN AI API KEY.
Raftlib: Open Source library for concurrent data processing pipelines
0
Raftlib is an open-source C++ Library that provides a framework for implementing parallel and concurrent data processing pipelines. It is designed to simplify the development of high-performance data processing applications by abstracting away the complexities of parallelism, concurrency, and data flow management.
It enables stream/data-flow parallel computation by linking parallel compute kernels together using simple right shift operators, similar to C++ streams for string manipulation. RaftLib eliminates the need for explicit usage of traditional threading libraries such as pthreads, std::thread, or OpenMP, which can lead to non-deterministic behavior when misused.
Weka
0
Weka is a collection of machine learning algorithms for data mining tasks. It contains tools for data preparation, classification, regression, clustering, association rules mining, and visualization.
Data Visualization Tools for Julia
0
Plots.jl is the most widely used plotting library for the Julia programming language. It's known for being especially powerful in its versatility and intuitiveness. It's limited set of dependencies and wide applicability across different graphics packages make it especially helpful in visualizing the results of your latest Julia implementation.
However, there are still multiple options available for Julia programmers to visualize their datasets. The second link details a comparison against a variety of Julia packages.
MDAnalysis - Python library for the analysis of molecular dynamics simulations
0
MDAnalysis is a python based library of tools for the analysis of molecular dynamics simulations. It is able to read and write many popular simulation formats including CHARMM, LAMMPS, GROMACS, and AMBER and more. This link contains the documentation pages of all MDAnalysis functions and has links to tutorials using Jupyter Notebooks.
Numpy - a Python Library
0
Numpy is a python package that leverages types and compiled C code to make many math operations in Python efficient. It is especially useful for matrix manipulation and operations.
Gaussian 16
0
Gaussian 16 is a computational chemistry package that is used in predicting molecular properties and understanding molecular behavior at a quantum mechanical level.
Horovod: Distributed deep learning training framework
0
Horovod is a distributed deep learning training framework. Using horovod, a single-GPU training script can be scaled to train across many GPUs in parallel. The library supports popular deep learning framework such as TensorFlow, Keras, PyTorch, and Apache MXNet.
Beautiful Soup - Simple Python Web Scraping
0
This package lets you easily scrape websites and extract information based on html tags and various other metadata found in the page. It can be useful for large-scale web analysis and other tasks requiring automated data gathering.
Neural Networks in Julia
0
Making a neural network has never been easier! The following link directs users to the Flux.jl package, the easiest way of programming a neural network using the Julia programming language. Julia is the fastest growing software language for AI/ML and this package provides a faster alternative to Python's TensorFlow and PyTorch with a 100% Julia native programming and GPU support.
TensorFlow for Deep Neural Networks
0
TensorFlow is a powerful framework for Deep Learning, developed by google. This specifically is their python package, which is easy to use and can be used to train incredibly powerful models.
MOPAC
0
MOPAC (Molecular Orbital PACkage) is a semi-empirical quantum chemistry package used to compute molecular properties and structures by using approximations of the Schrödinger equation. This tutorial explains the process of using MOPAC for different forms of calculations.
DAGMan for orchestrating complex workflows on HTC resources (High Throughput Computing)
0
DAGMan (Directed Acyclic Graph Manager) is a meta-scheduler for HTCondor. It manages dependencies between jobs at a higher level than the HTCondor Scheduler.
It is a workflow management system developed by the High-Throughput Computing (HTC) community, specifically for managing large-scale scientific computations and data analysis tasks. It enables users to define complex workflows as directed acyclic graphs (DAGs). In a DAG, nodes represent individual computational tasks, and the directed edges represent dependencies between the tasks. DAGMan manages the execution of these tasks and ensures that they are executed in the correct order based on their dependencies.
The primary purpose of DAGMan is to simplify the management of large-scale computations that consist of numerous interdependent tasks. By defining the dependencies between tasks in a DAG, users can easily express the order of execution and allow DAGMan to handle the scheduling and coordination of the tasks. This simplifies the development and execution of complex scientific workflows, making it easier to manage and track the progress of computations.
OnShape FeatureScripts: Custom features for everyone
0
OnShape FeatureScripts allow users to create their own features via OnShape's programming language. The user can make these as simple or complex as they need, and they can save tons of time for heavy OnShape users or complex projects!
Implementing Markov Processes with Julia
0
The following link provides an easy method of implementing Markov Decision Processes (MDP) in the Julia computing language. MDPs are a class of algorithms designed to handle stochastic situations where the actor has some level of control. For example, used at a low level, MDPs can be used to control an inverted pendulum, but applied in higher level decision making the can also decide when to take evasive action in air traffic management. MDPs can also be extended to the partially observable domain to form the Partially Observable Markov Decision Process (POMDP). This link contains a wealth of information to show one can easily implement basic POMDP and MDP algorithms and apply well known online and offline solvers.