Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
HPC University
3
A comprehensive list of training resources from the HPC University. HPCU is a virtual organization whose primary goal is to provide a cohesive, persistent, and sustainable on-line environment to share educational and training materials for a continuum of high performance computing environments that span desktop computing capabilities to the highest-end of computing facilities offered by HPC centers.
An Introduction to Cryptography with Python
2
This comprehensive workshop is designed to guide participants through the world of cryptography, from foundational concepts to advanced implementations. Starting with the basics of encryption, decryption, and hashing, the workshop discusses real-world applications like SSL, blockchain, and digital signatures. Interactive Python-based coding examples, such as symmetric and asymmetric encryption, will provide hands-on experience. Participants will also learn to identify cryptographic vulnerabilities and perform attacks like length extension. Finally, the workshop also explores future trends such as quantum cryptography and zero-knowledge proofs, providing participants with the knowledge to apply cryptography in securing modern digital systems. Ideal for beginners and intermediate learners alike, this workshop is a step-by-step journey into mastering cryptographic principles and practices.
Using Linux commands in a python script (and the difference between the subprocess and os python modules)
1
Learn how to use Linux commands in a python script. Specifically, learn how to use the subprocess and os modules in python to run shell commands (which run Linux commands) in a python script that is run on a cluster.
Cornell Virtual Workshop
1
Cornell Virtual Workshop is a comprehensive training resource for high performance computing topics. The Cornell University Center for Advanced Computing (CAC) is a leader in the development and deployment of Web-based training programs. Our Cornell Virtual Workshop learning platform is designed to enhance the computational science skills of researchers, accelerate the adoption of new and emerging technologies, and broaden the participation of underrepresented groups in science and engineering. Over 350,000 unique visitors have accessed Cornell Virtual Workshop training on programming languages, parallel computing, code improvement, and data analysis. The platform supports learning communities around the world, with code examples from national systems such as Frontera, Stampede2, and Jetstream2.
NCSA HPC Training Moodle
1
Self-paced tutorials on high-end computing topics such as parallel computing, multi-core performance, and performance tools. Other related topics include 'Cybersecurity for End Users' and 'Developing Webinar Training.' Some of the tutorials also offer digital badges. Many of these tutorials were previously offered on CI-Tutor. A list of open access training courses are provided below.
Parallel Computing on High-Performance Systems
Profiling Python Applications
Using an HPC Cluster for Scientific Applications
Debugging Serial and Parallel Codes
Introduction to MPI
Introduction to OpenMP
Introduction to Visualization
Introduction to Performance Tools
Multilevel Parallel Programming
Introduction to Multi-core Performance
Using the Lustre File System
ACCESS HPC Workshop Series
1
Monthly workshops sponsored by ACCESS on a variety of HPC topics organized by Pittsburgh Supercomputing Center (PSC). Each workshop will be telecast to multiple satellite sites and workshop materials are archived.
Data Visualization tools for Python
1
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. It makes analyzing and presenting your data extremely easy and works with Python which many people already know.
Enhanced Sampling for MD simulations
1
Introduction to MP
0
Open Multi-Processing, is an API designed to simplify the integration of parallelism in software development, particularly for applications running on multi-core processors and shared-memory systems. It is an important resource as it goes over what openMP and ways to work with it. It is especially important because it provides a straightforward way to express parallelism in code through pragma directives, making it easier to create parallel regions, parallelize loops, and define critical sections. The key benefit of OpenMP lies in its ease of use, automatic thread management, and portability across various compilers and platforms. For app development, especially in the context of mobile or desktop applications, OpenMP can enhance performance by leveraging the capabilities of modern multi-core processors. By parallelizing computationally intensive tasks, such as image processing, data analysis, or simulations, apps can run faster and more efficiently, providing a smoother user experience and taking full advantage of the available hardware resources. OpenMP's scalability allows apps to adapt to different hardware configurations, making it a valuable tool for developers aiming to optimize their software for a range of devices and platforms.
Python Tools for Data Science
0
Python has become a very popular programming language and software ecosystem for work in Data Science, integrating support for data access, data processing, modeling, machine learning, and visualization. In this webinar, we will describe some of the key Python packages that have been developed to support that work, and highlight some of their capabilities. This webinar will also serve as an introduction and overview of topics addressed in two Cornell Virtual Workshop tutorials, available at https://cvw.cac.cornell.edu/pydatasci1 and https://cvw.cac.cornell.edu/pydatasci2
PyTorch Introduction
0
This is a very barebones introduction to the PyTorch framework used to implement machine learning. This tutorial implements a feed-forward neural network and is taught completely asynchronously through Stanford University. A good start after learning the theory behind feed-forward neural networks.
CUDA Toolkit Documentation
0
NVIDIA CUDA Toolkit Documentation: If you are working with GPUs in HPC, the NVIDIA CUDA Toolkit is essential. You can access the CUDA Toolkit documentation, including programming guides and API references, at this provided website
Optimizing Research Workflows - A Documentation of Snakemake
0
Snakemake is a powerful and versatile workflow management system that simplifies the creation, execution, and management of data analysis pipelines. It uses a user-friendly, Python-based language to define workflows, making it particularly valuable for automating and reproducibly managing complex computational tasks in research and data analysis.
AI for improved HPC research - Cursor and Termius - Powerpoint
0
These slides provide an introduction on how Termius and Cursor, two new and freemium apps that use AI to perform more efficient work, can be used for faster HPC research.
MATLAB with other Programming Languages
0
MATLAB is a really useful tool for data analysis among other computational work. This tutorial takes you through using MATLAB with other programming languages including C, C++, Fortran, Java, and Python.
Using Dask on HPC Systems
0
A tutorial on the effective use of Dask on HPC resources. The four-hour tutorial will be split into two sections, with early topics focused on novice Dask users and later topics focused on intermediate usage on HPC and associated best practices. The knowledge areas covered include (but are not limited to):
Beginner section
High-level collections including dask.array and dask.dataframe
Distributed Dask clusters using HPC job schedulers
Earth Science data analysis using Dask with Xarray
Using the Dask dashboard to understand your computation
Intermediate section
Optimizing the number of workers and memory allocation
Choosing appropriate chunk shapes and sizes for Dask collections
Querying resource usage and debugging errors
Intro to Statistical Computing with Stan
0
The Stan language is used to specify a (Bayesian) statistical model with an imperative program calculating the log probability density function. Here are some useful links to start your exploration of this statistical programming language, and a Python interface to Stan.
Working with Python on HPC Clusters
0
This tutorial series and documentation covers topics on using Python on HPC clusters. The specific steps are based on the HOPPER cluster at George Mason University in Fairfax, VA. They should be implementable on most HPC clusters that have the SLURM scheduler installed, the Environment Modules system for managing packages and Open onDemand for a web-based GUI to access the cluster resources.
Vulkan Support Survey across Systems
0
It's not uncommon to see beautiful visualizations in HPC center galleries, but the majority of these are either rendered off the HPC or created using programs that run on OpenGL or custom rasterization techniques. To put it simply the next generation of graphics provided by OpenGL's successor Vulkan is strangely absent in the super computing world. The aim of this survey of available resources is to determine the systems that can support Vulkan workflows and programs. This will assist users in getting past some of the first hurdles in using Vulkan in HPC contexts.
Header-only C++ JSON library
0
JSON is a lightweight format for storing and transporting data, for example in a config file. This library is header-only, and has easy-to-read documentation. It is a C++ library.
HPCwire
0
HPCwire is a prominent news and information source for the HPC community. Their website offers articles, analysis, and reports on HPC technologies, applications, and industry trends.
AI powered VsCode Editor
0
**Cursor: The AI-Powered Code Editor**
Cursor is a cutting-edge, AI-first code editor designed to revolutionize the way developers write, debug, and understand code. Built upon the premise of pair-programming with artificial intelligence, Cursor harnesses the capabilities of advanced AI models to offer real-time coding assistance, bug detection, and code generation.
**How Cursor Benefits High-Performance Computing (HPC) Work:**
1. **Efficient Code Development:** With AI-assisted code generation, researchers and developers in the HPC realm can quickly write optimized code for simulations, data processing, or modeling tasks, reducing the time to deployment.
2. **Debugging Assistance:** Handling complex datasets and simulations often lead to intricate bugs. Cursor's capability to automatically investigate errors and determine root causes can save crucial time in the HPC workflow.
3. **Tailored Code Suggestions:** Cursor's AI provides context-specific code suggestions by understanding the entire codebase. For HPC applications where performance is paramount, this means receiving recommendations that align with optimization goals.
4. **Improved Code Quality:** With AI-driven bug scanning and linter checks, Cursor ensures that HPC codes are not only fast but also robust and free of common errors.
5. **Easy Integration:** Being a fork of VSCode, Cursor allows seamless migration, ensuring that developers working in HPC can swiftly integrate their existing VSCode setups and extensions.
In essence, for HPC tasks that demand speed, precision, and robustness, Cursor acts as an invaluable co-pilot, guiding developers towards efficient and optimized coding solutions.
It is free if you provide your own OPEN AI API KEY.
OpenMP Tutorial
0
OpenMP (Open Multi-Processing) is an API that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.
Advanced Mathematical Optimization Techniques
0
Mathematical optimization deals with the problem of finding numerically minimums or maximums of a functions. This tutorial provides the Python solutions for the optimization problems with examples.
Spatial Data Science in the Cloud (Alpine HPC) using Python
0
Spatial Data Science is a growing field across a wide range of industries and disciplines. The open-source programming language Python has many libraries that support spatial analysis, but what do you do when your computer is unable to tackle the massive file sizes of high-resolution data and the computing power required in your analysis?
There materials have been prepared to teach you spatial data science and how to execute your analysis using a high-performance computer (HPC).