Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
PetIGA, an open-source code for isogeometric analysis
0
This documentation provides an overview of the PetIGA framework, an open source code for solving multiphysics problems with isogeometric analysis. The documentation covers some simple tutorials and examples to help users get started with the framework and apply it to solve real-world problems in continuum mechanics, including solid and fluid mechanics.
Info about retiring of R GIS packages rgdal, rgeos, maptools in 2023
0
R GIS packages "rgdal", "rgeos", and "maptools" are package set to be archived and no longer supported by end of 2023. Many other R GIS packages are build on top of these packages, including "sp" and "raster". The packages recommended as replacement for "sp" is "sf" and the replacement for "raster" is "terra". Below are links to published articles regarding this transition. Additionally, I am including links to the documentation for the new packages recommended to be used "sf" and "terra".
Machine Learning with sci-kit learn
0
In the realm of Python-based machine learning, Scikit-Learn stands out as one of the most powerful and versatile tools available. This introductory post serves as a gateway to understanding Scikit-Learn through explanations of introductory ML concepts along with implementations examples in Python.
Campus Research Computing Consortium (CaRCC)
0
CaRCC – the Campus Research Computing Consortium – is an organization of dedicated professionals developing, advocating for, and advancing campus research computing and data and associated professions.
Vision: CaRCC advances the frontiers of research by improving the effectiveness of research computing and data (RCD) professionals, including their career development and visibility, and their ability to deliver services and resources for researchers. CaRCC connects RCD professionals and organizations around common objectives to increase knowledge sharing and enable continuous innovation in research computing and data capabilities.
National Public Radio (NPR)
0
Pluses and challenges of mentor selection. Offers tips for acquiring a mentor (finding, asking). And how to be a good mentee. SMART framework mentioned. Discrimination mentioned. Difference between mentor and sponsor underlined. More than one mentor encouraged. Good tips.
Research Security Operations Center at IU
0
The NSF-funded ResearchSOC helps make scientific computing resilient to cyberattacks and capable of supporting trustworthy, productive research through operational cybersecurity services, training, and information sharing necessary to a community as unique and variable as research and education (R&E).
ResearchSOC is a service offering from Indiana University's OmniSOC.
Numba: Compiler for Python
0
Numba is a Python compiler designed for accelerating numerical and array operations, enabling users to enhance their application's performance by writing high-performance functions in Python itself. It utilizes LLVM to transform pure Python code into optimized machine code, achieving speeds comparable to languages like C, C++, and Fortran. Noteworthy features include dynamic code generation during import or runtime, support for both CPU and GPU hardware, and seamless integration with the Python scientific software ecosystem, particularly Numpy.
Thrust resources
0
Thrust is a CUDA library that optimizes parallelization on the GPU for you. The Thrust tutorial is great for beginners. The documentation is helpful for anyone using Thrust.
Neocortex Documentation
0
Neocortex is a new supercomputing cluster at the Pittsburgh Supercomputing Center (PSC) that features groundbreaking AI hardware from Cerebras Systems.
FSL Lectures
0
This is the official University of Oxford FSL group lecture page. This includes information on upcoming and past courses (online and in-person), as well as lecture materials. Available lecture materials includes slides and recordings on using FSL, MR physics, and applications of imaging data.
Installing Rocky Linux Operating System
0
Rocky Linux is an open-source enterprise operating system. It is compatible with Red Hat Enterprise Linux (RHEL). It is a community-driven project that provides a stable and reliable platform for production workloads. It is one of the best alternatives to Opensource CentOS, since Centos will be on end of life (EoL) soon in 2024 by shifting to CentOS Stream.
Spatial Data Science in the Cloud (Alpine HPC) using Python
0
Spatial Data Science is a growing field across a wide range of industries and disciplines. The open-source programming language Python has many libraries that support spatial analysis, but what do you do when your computer is unable to tackle the massive file sizes of high-resolution data and the computing power required in your analysis?
There materials have been prepared to teach you spatial data science and how to execute your analysis using a high-performance computer (HPC).
Slurm User Group Mailing List
0
MATLAB bioinformatics toolbox
0
Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing (NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox functions, you can read genomic and proteomic data from standard file formats such as SAM, FASTA, CEL, and CDF, as well as from online databases such as the NCBI Gene Expression Omnibus and GenBank.
Practical Machine Learning with Python
0
This video series provides a holistic understanding of machine learning, covering theory, application, and inner workings of supervised, unsupervised, and deep learning algorithms. It covers topics such as linear regression, K Nearest Neighbors, Support Vector Machines (SVM), flat clustering, hierarchical clustering, and neural networks. Goes over the high level intuitions of the algorithms and how they are logically meant to work. Apply the algorithms in code using real world data sets along with a module, such as with Scikit-Learn.
Building the ArduPilot environment for Linux
0
This article provides instructions for building AirSim, an open-source simulator for autonomous vehicles, on Linux. It outlines the steps to build Unreal Engine, clone and build the AirSim repository, and set up the Unreal environment. It also includes information on how to use AirSim and optional setups such as remote control for manual flight.
Setting up PyFR flow solver on clusters
0
These instructions were executed on the FASTER and Grace cluster computing facilities at Texas A&M University. However, the process can be applied to other clusters with similar environments. For local installation, please refer to the PyFR documentation.
Please note that these instructions were valid at the time of writing. Depending on the time you're executing these, the versions of the modules may need to be updated.
1. Loading Modules
The first step involves loading pre-installed software libraries required for PyFR. Execute the following commands in your terminal to load these modules:
module load foss/2022b
module load libffi/3.4.4
module load OpenSSL/1.1.1k
module load METIS/5.1.0
module load HDF5/1.13.1
2. Python Installation from Source
Choose a location for Python 3.11.1 installation, preferably in a .local directory. Navigate to the directory containing the Python 3.11.1 source code. Then configure and install Python:
cd $INSTALL/Python-3.11.1/
./configure --prefix=$LOCAL --enable-shared --with-system-ffi --with-openssl=/sw/eb/sw/OpenSSL/1.1.1k-GCCcore-11.2.0/ PKG_CONFIG_PATH=$LOCAL/pkgconfig LDFLAGS=/usr/lib64/libffi.so.6.0.2
make clean; make -j20; make install;
3. Virtual Environment Setup
A virtual environment allows you to isolate Python packages for this project from others on your system. Create and activate a virtual environment using:
pip3.11 install virtualenv
python3.11 -m venv pyfr-venv
. pyfr-venv/bin/activate
4. Install PyFR Dependencies
Several Python packages are required for PyFR. Install these packages using the following commands:
pip3 install --upgrade pip
pip3 install --no-cache-dir wheel
pip3 install --no-cache-dir botorch pandas matplotlib pyfr
pip3 uninstall -y pyfr
5. Install PyFR from Source
Finally, navigate to the directory containing the PyFR source code, and then install PyFR:
cd /scratch/user/sambit98/github/PyFR/
python3 setup.py develop
Congratulations! You've successfully set up PyFR on the FASTER and Grace cluster computing facilities. You should now be able to use PyFR for your computational fluid dynamics simulations.
Weka
0
Weka is a collection of machine learning algorithms for data mining tasks. It contains tools for data preparation, classification, regression, clustering, association rules mining, and visualization.
iOS CoreML + SwiftUI Image Classification Model
0
This tutorial will teach step-by-step how to create an image classification model using Core ML in XCode and integrate it into an iOS app that will use the user's iPhone camera to scan objects and predict based on the image classification model.
Resource to active inference
0
Active inference is an emerging study field in machine learning and computational neuroscience. This website in particular introduces "active inference institute", which has established a couple of years ago, and contains a wide variety of resources for understanding the theory of active inference and for participating a worldwide active inference community.
The Theory Behind Neural Networks (Very Simplified)
0
This video by the YouTube channel 3Blue1Brown provides a very simplified introduction to the theory behind neural networks. This tutorial is perfect for those that don't have much linear algebra or machine learning background and are eager to step into the realm of ML!
Data Visualization Tools for Julia
0
Plots.jl is the most widely used plotting library for the Julia programming language. It's known for being especially powerful in its versatility and intuitiveness. It's limited set of dependencies and wide applicability across different graphics packages make it especially helpful in visualizing the results of your latest Julia implementation.
However, there are still multiple options available for Julia programmers to visualize their datasets. The second link details a comparison against a variety of Julia packages.
Hour of Ci
0
Hour of Cyberinfrastructure (Hour of CI) is a nationwide campaign to introduce undergraduate and graduate students to cyberinfrastructure and geographic information science (GIS).
Introduction to Probabilistic Graphical Models
0
This website summarizes the notes of Stanford's introductory course on probabilistic graphical models.
It starts from the very basics and concludes by explaining from first principles the variational auto-encoder, an important probabilistic model that is also one of the most influential recent results in deep learning.
How-To Video: Apply for an ACCESS Allocation
0
ACCESS Allocations website tour, and how to apply for allocations.