Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
HPC University
3
A comprehensive list of training resources from the HPC University. HPCU is a virtual organization whose primary goal is to provide a cohesive, persistent, and sustainable on-line environment to share educational and training materials for a continuum of high performance computing environments that span desktop computing capabilities to the highest-end of computing facilities offered by HPC centers.
Cornell Virtual Workshop
1
Cornell Virtual Workshop is a comprehensive training resource for high performance computing topics. The Cornell University Center for Advanced Computing (CAC) is a leader in the development and deployment of Web-based training programs. Our Cornell Virtual Workshop learning platform is designed to enhance the computational science skills of researchers, accelerate the adoption of new and emerging technologies, and broaden the participation of underrepresented groups in science and engineering. Over 350,000 unique visitors have accessed Cornell Virtual Workshop training on programming languages, parallel computing, code improvement, and data analysis. The platform supports learning communities around the world, with code examples from national systems such as Frontera, Stampede2, and Jetstream2.
FSL Lectures
0
This is the official University of Oxford FSL group lecture page. This includes information on upcoming and past courses (online and in-person), as well as lecture materials. Available lecture materials includes slides and recordings on using FSL, MR physics, and applications of imaging data.
Advanced Compilers: The Self-Guided Online Course
0
This is a self guided online course on compilers. The topics covered throughout the course include universal compilers topics like intermediate representations, data flow, and “classic” optimizations as well as more research focusedtopics such as parallelization, just-in-time compilation, and garbage collection.
Automated Machine Learning Book
0
The authoritative book on automated machine learning, which allows practitioners without ML expertise to develop and deploy state-of-the-art machine learning approaches. Describes the background of techniques used in detail, along with tools that are available for free.
Advanced Mathematical Optimization Techniques
0
Mathematical optimization deals with the problem of finding numerically minimums or maximums of a functions. This tutorial provides the Python solutions for the optimization problems with examples.
Thrust resources
0
Thrust is a CUDA library that optimizes parallelization on the GPU for you. The Thrust tutorial is great for beginners. The documentation is helpful for anyone using Thrust.
Why 'N How: Martinos Center for Biomedical Imaging:
0
The Why & How seminar series is designed to introduce research assistants, graduate students, and postdoctoral and clinical fellows – really, anyone who is interested – to the many tools used in medical imaging. These include software tools and most of the major imaging modalities wielded by investigators (MRI, PET, EEG, MEG, optical, TMS and others). As the name of the series suggests, the talks cover both the reasons researchers might need a particular tool and the nuts and bolts of how to apply it. You can watch videos of the overviews below.
Performance Engineering Of Software Systems
0
A class from MITOpenCourseware that gives a hands on approach to building scalable and high-performance software systems. Topics include performance analysis, algorithmic techniques for high performance, instruction-level optimizations, caching optimizations, parallel programming, and building scalable systems.
Machine Learning in R online book
0
The free online book for the mlr3 machine learning framework for R. Gives a comprehensive overview of the package and ecosystem, suitable from beginners to experts. You'll learn how to build and evaluate machine learning models, build complex machine learning pipelines, tune their performance automatically, and explain how machine learning models arrive at their predictions.
Biopython Tutorial
0
The Biopython Tutorial and Cookbook website is a dedicated online resource for users in the field of computational biology and bioinformatics. It provides a collection of tutorials and practical examples focused on using the Biopython library.
The website offers a series of tutorials that cover various aspects of Biopython, catering to users with different levels of expertise. It also includes code snippets and examples, and common solutions to common challenges in computational biology.
CyberAmbassadors: Professional Skills for Interdisciplinary Work
0
The CyberAmbassadors project was funded through a workforce development grant from the National Science Foundation (Award #1730137). Starting in 2017, the initial focus of this project was to develop, test, and refine new curriculum to help CyberInfrastructure (CI) Professionals strengthen their communications, teamwork and leadership skills. With support and collaboration from a number of academic and professional organizations, the CyberAmbassadors project was expanded to offer professional skills training to college students and professionals working across STEM (science, technology, engineering, math) disciplines.
Active inference textbook
0
This textbook is the first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines including computational neurosciences, machine learning, artificial intelligence, and robotics. It was published in 2022 and it's open access at this time. The contents in this textbook should be educational to those who want to understand how the free energy principle is applied to the normative behavior of living organisms and who want to widen their knowledge of sequential decision making under uncertainty.
Astronomy data analysis with astropy
0
Astropy is a community-driven package that offers core functionalities needed for astrophysical computations and data analysis. From coordinate transformations to time and date handling, unit conversions, and cosmological calculations, Astropy ensures that astronomers can focus on their research without getting bogged down by the intricacies of programming. This guide walks you through practical usage of astropy from CCD data reduction to computing galactic orbits of stars.
Examples of code using JSON nlohmann header only Library for C++
0
This code showcases how to work with the header-only nlohmann JSON library for C++. In order to compile, change the extensions from json_test.txt to json_test.cpp and test.txt to test.json. You must also download the header files from https://github.com/nlohmann/json. Complilation instructions are at the bottom of json_test. This code is very helpful for creating config files, for example.
Git Branching Workflow and Maneuvers
0
A couple of resources that:
1.) Presents and defends a git branching workflow for stable collaborative git based projects. ("A Successful Git Branching Model")
2.) Maps "What do you want to do?" to the commands necessary to accomplish it. ("Git Flight Rules")
OpenMP Tutorial
0
OpenMP (Open Multi-Processing) is an API that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.
AI Institutes Cyberinfrastructure Documents: SAIL Meeting
0
Materials from the SAIL meeting (https://aiinstitutes.org/2023/06/21/sail-2023-summit-for-ai-leadership/). A space where AI researchers can learn about using ACCESS resources for AI applications and research.
NERSC Training and Tutorials
0
A comprehensive collection of NERSC developed training and tutorial events, offered on regular schedules. All sessions are archived, including slide decks, video recordings, and software examples as are available. Some examples of past training and tutorial topics are listed below
Deep Learning for Sciences Webinar Series
BerkeleyGW Tutorial Workshop
VASP Trainings
Timemory Software Monitoring Tutorial, April 2021
HPCToolkit to Measure and Analyzing GPU Applications Performance Tutorial
Totalview Tutorial
NVidia HPCSDK - OpenMP Target Offload Training
Parallelware Training Series
ARM Debugging and Profiling Tools Tutorial
Roofline on NVIDIA GPUs
GPUs for Science events
3-part OpenACC Training Series
9-part CUDA Training Series
What are LSTMs?
0
This reading will explain what a long short-term memory neural network is. LSTMs are a type of neural networks that rely on both past and present data to make decisions about future data. It relies on loops back to previous data to make such decisions. This makes LSTMs very good for predicting time-dependent behavior.
Examples of Thrust code for GPU Parallelization
0
Some examples for writing Thrust code. To compile, download the CUDA compiler from NVIDIA. This code was tested with CUDA 9.2 but is likely compatible with other versions. Before compiling change extension from thrust_ex.txt to thrust_ex.cu. Any code on the device (GPU) that is run through a Thrust transform is automatically parallelized on the GPU. Host (CPU) code will not be. Thrust code can also be compiled to run on a CPU for practice.
NCSA HPC-Moodle
0
Self-paced tutorials on high-end computing topics such as parallel computing, multi-core performance, and performance tools. Some of the tutorials also offer digital badges.
Setting up PyFR flow solver on clusters
0
These instructions were executed on the FASTER and Grace cluster computing facilities at Texas A&M University. However, the process can be applied to other clusters with similar environments. For local installation, please refer to the PyFR documentation.
Please note that these instructions were valid at the time of writing. Depending on the time you're executing these, the versions of the modules may need to be updated.
1. Loading Modules
The first step involves loading pre-installed software libraries required for PyFR. Execute the following commands in your terminal to load these modules:
module load foss/2022b
module load libffi/3.4.4
module load OpenSSL/1.1.1k
module load METIS/5.1.0
module load HDF5/1.13.1
2. Python Installation from Source
Choose a location for Python 3.11.1 installation, preferably in a .local directory. Navigate to the directory containing the Python 3.11.1 source code. Then configure and install Python:
cd $INSTALL/Python-3.11.1/
./configure --prefix=$LOCAL --enable-shared --with-system-ffi --with-openssl=/sw/eb/sw/OpenSSL/1.1.1k-GCCcore-11.2.0/ PKG_CONFIG_PATH=$LOCAL/pkgconfig LDFLAGS=/usr/lib64/libffi.so.6.0.2
make clean; make -j20; make install;
3. Virtual Environment Setup
A virtual environment allows you to isolate Python packages for this project from others on your system. Create and activate a virtual environment using:
pip3.11 install virtualenv
python3.11 -m venv pyfr-venv
. pyfr-venv/bin/activate
4. Install PyFR Dependencies
Several Python packages are required for PyFR. Install these packages using the following commands:
pip3 install --upgrade pip
pip3 install --no-cache-dir wheel
pip3 install --no-cache-dir botorch pandas matplotlib pyfr
pip3 uninstall -y pyfr
5. Install PyFR from Source
Finally, navigate to the directory containing the PyFR source code, and then install PyFR:
cd /scratch/user/sambit98/github/PyFR/
python3 setup.py develop
Congratulations! You've successfully set up PyFR on the FASTER and Grace cluster computing facilities. You should now be able to use PyFR for your computational fluid dynamics simulations.
CMake Tutorials
0
CMake is an open-source tool used to manage the build process in operating systems. This tutorial takes you through how to use CMake from the very basics with example projects.
Texas A&M HPRC Training Site
0
Training Resources and Courses offered by Texas A&M's Research Computing Group