Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
HPCwire
0
HPCwire is a prominent news and information source for the HPC community. Their website offers articles, analysis, and reports on HPC technologies, applications, and industry trends.
Python
0
Python course offered by Texas A&M HPRC
Set Up VSCode for Python and Github
0
VSCode is a popular IDE that runs on Windows, MacOS, and Linux. This tutorial will explain how to get set up with VSCode to code in Python. It will also provide a tutorial on how to set up Github integration within VSCode.
CUDA Toolkit Documentation
0
NVIDIA CUDA Toolkit Documentation: If you are working with GPUs in HPC, the NVIDIA CUDA Toolkit is essential. You can access the CUDA Toolkit documentation, including programming guides and API references, at this provided website
Practical Machine Learning with Python
0
This video series provides a holistic understanding of machine learning, covering theory, application, and inner workings of supervised, unsupervised, and deep learning algorithms. It covers topics such as linear regression, K Nearest Neighbors, Support Vector Machines (SVM), flat clustering, hierarchical clustering, and neural networks. Goes over the high level intuitions of the algorithms and how they are logically meant to work. Apply the algorithms in code using real world data sets along with a module, such as with Scikit-Learn.
Introduction to Parallel Programming for GPUs with CUDA
0
This tutorial provides a comprehensive introduction to CUDA programming, focusing on essential concepts such as CUDA thread hierarchy, data parallel programming, host-device heterogeneous programming model, CUDA kernel syntax, GPU memory hierarchy, and memory optimization techniques like global memory coalescing and shared memory bank conflicts. Aimed at researchers, students, and practitioners, the tutorial equips participants with the skills needed to leverage GPU acceleration for scalable computation, particularly in the context of AI.
Using Dask on HPC Systems
0
A tutorial on the effective use of Dask on HPC resources. The four-hour tutorial will be split into two sections, with early topics focused on novice Dask users and later topics focused on intermediate usage on HPC and associated best practices. The knowledge areas covered include (but are not limited to):
Beginner section
High-level collections including dask.array and dask.dataframe
Distributed Dask clusters using HPC job schedulers
Earth Science data analysis using Dask with Xarray
Using the Dask dashboard to understand your computation
Intermediate section
Optimizing the number of workers and memory allocation
Choosing appropriate chunk shapes and sizes for Dask collections
Querying resource usage and debugging errors
Scipy Lecture Notes
0
Comprehensive tutorials and lecture notes covering various aspects of scientific computing using Python and Scipy.
Handwritten Digits Tutorial in PyTorch
0
This tutorial is essentially the "hello world" of image recognition and feed-forward neural network (using PyTorch). Using the MNIST database (filled within images of handwritten digits), the tutorial will instruct how to build a feed-forward neural network that can recognize handwritten digits. A solid understanding of feed-forward and back-propagation is recommended.
OpenMP Tutorial
0
OpenMP (Open Multi-Processing) is an API that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.
Regular Expressions
0
Regular expressions (sometimes referred to as RegEx) is an incredibly powerful tool that is used to define string patterns for "find" or "find and replace" operations on strings, or for input validation. Regular Expressions are used in search engines, in search and replace dialogs of word processors and text editors, and text-processing Linux utilities such as sed and awk. They are supported in many programming languages, including Python, R, Perl, Java, and others.
Quick and Robust Data Augmentation with Albumentations Library
0
Data augmentation is a crucial step in the pipeline for image classification with deep learning. Albumentations is an extremely versatile Python library that can be used to easily augment images. Transformations include rotations, flips, downscaling, distortions, blurs, and many more.
Citation:
Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. Albumentations: Fast and Flexible Image Augmentations. Information. 2020; 11(2):125. https://doi.org/10.3390/info11020125
AHPCC documentary
0
This link is a documentary website to use AHPCC.
Vulkan Support Survey across Systems
0
It's not uncommon to see beautiful visualizations in HPC center galleries, but the majority of these are either rendered off the HPC or created using programs that run on OpenGL or custom rasterization techniques. To put it simply the next generation of graphics provided by OpenGL's successor Vulkan is strangely absent in the super computing world. The aim of this survey of available resources is to determine the systems that can support Vulkan workflows and programs. This will assist users in getting past some of the first hurdles in using Vulkan in HPC contexts.
AI powered VsCode Editor
0
**Cursor: The AI-Powered Code Editor**
Cursor is a cutting-edge, AI-first code editor designed to revolutionize the way developers write, debug, and understand code. Built upon the premise of pair-programming with artificial intelligence, Cursor harnesses the capabilities of advanced AI models to offer real-time coding assistance, bug detection, and code generation.
**How Cursor Benefits High-Performance Computing (HPC) Work:**
1. **Efficient Code Development:** With AI-assisted code generation, researchers and developers in the HPC realm can quickly write optimized code for simulations, data processing, or modeling tasks, reducing the time to deployment.
2. **Debugging Assistance:** Handling complex datasets and simulations often lead to intricate bugs. Cursor's capability to automatically investigate errors and determine root causes can save crucial time in the HPC workflow.
3. **Tailored Code Suggestions:** Cursor's AI provides context-specific code suggestions by understanding the entire codebase. For HPC applications where performance is paramount, this means receiving recommendations that align with optimization goals.
4. **Improved Code Quality:** With AI-driven bug scanning and linter checks, Cursor ensures that HPC codes are not only fast but also robust and free of common errors.
5. **Easy Integration:** Being a fork of VSCode, Cursor allows seamless migration, ensuring that developers working in HPC can swiftly integrate their existing VSCode setups and extensions.
In essence, for HPC tasks that demand speed, precision, and robustness, Cursor acts as an invaluable co-pilot, guiding developers towards efficient and optimized coding solutions.
It is free if you provide your own OPEN AI API KEY.
C Programming
0
"These notes are part of the UW Experimental College course on Introductory C Programming. They are based on notes prepared (beginning in Spring, 1995) to supplement the book The C Programming Language, by Brian Kernighan and Dennis Ritchie, or K&R as the book and its authors are affectionately known. (The second edition was published in 1988 by Prentice-Hall, ISBN 0-13-110362-8.) These notes are now (as of Winter, 1995-6) intended to be stand-alone, although the sections are still cross-referenced to those of K&R, for the reader who wants to pursue a more in-depth exposition." C is a low-level programming language that provides a deep understanding of how a computer's memory and hardware work. This knowledge can be valuable when optimizing apps for performance or when dealing with resource-constrained environments.C is often used as the foundation for creating cross-platform libraries and frameworks. Learning C can allow you to develop libraries that can be used across different platforms, including iOS, Android, and desktop environments.
Working with Python on HPC Clusters
0
This tutorial series and documentation covers topics on using Python on HPC clusters. The specific steps are based on the HOPPER cluster at George Mason University in Fairfax, VA. They should be implementable on most HPC clusters that have the SLURM scheduler installed, the Environment Modules system for managing packages and Open onDemand for a web-based GUI to access the cluster resources.
Optimizing Research Workflows - A Documentation of Snakemake
0
Snakemake is a powerful and versatile workflow management system that simplifies the creation, execution, and management of data analysis pipelines. It uses a user-friendly, Python-based language to define workflows, making it particularly valuable for automating and reproducibly managing complex computational tasks in research and data analysis.
Official Documentation for PyTorch and NumPy
0
The official documentation for PyTorch, a machine learning tensor-based framework, and NumPy, which allows for support for ndarrays which is useful to make tensors when implementing NNs. Both libraries can be installed with pip.
Python Data and Viz Training (CCEP Program)
0
Examples of code using JSON nlohmann header only Library for C++
0
This code showcases how to work with the header-only nlohmann JSON library for C++. In order to compile, change the extensions from json_test.txt to json_test.cpp and test.txt to test.json. You must also download the header files from https://github.com/nlohmann/json. Complilation instructions are at the bottom of json_test. This code is very helpful for creating config files, for example.
Intro to Statistical Computing with Stan
0
The Stan language is used to specify a (Bayesian) statistical model with an imperative program calculating the log probability density function. Here are some useful links to start your exploration of this statistical programming language, and a Python interface to Stan.
Conda
0
Conda is a popular package management system. This tutorial introduces you to Conda and walks you through managing Python, your environment, and packages.
Introduction to MP
0
Open Multi-Processing, is an API designed to simplify the integration of parallelism in software development, particularly for applications running on multi-core processors and shared-memory systems. It is an important resource as it goes over what openMP and ways to work with it. It is especially important because it provides a straightforward way to express parallelism in code through pragma directives, making it easier to create parallel regions, parallelize loops, and define critical sections. The key benefit of OpenMP lies in its ease of use, automatic thread management, and portability across various compilers and platforms. For app development, especially in the context of mobile or desktop applications, OpenMP can enhance performance by leveraging the capabilities of modern multi-core processors. By parallelizing computationally intensive tasks, such as image processing, data analysis, or simulations, apps can run faster and more efficiently, providing a smoother user experience and taking full advantage of the available hardware resources. OpenMP's scalability allows apps to adapt to different hardware configurations, making it a valuable tool for developers aiming to optimize their software for a range of devices and platforms.
Learn Python Online
0
Learn Python online with these distance learning courses.