Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
Biopython Tutorial
0
The Biopython Tutorial and Cookbook website is a dedicated online resource for users in the field of computational biology and bioinformatics. It provides a collection of tutorials and practical examples focused on using the Biopython library.
The website offers a series of tutorials that cover various aspects of Biopython, catering to users with different levels of expertise. It also includes code snippets and examples, and common solutions to common challenges in computational biology.
Application Fundamentals (Android)
0
The provided text discusses various aspects of Android app development fundamentals. It covers key concepts related to app components, the AndroidManifest.xml file, and app resources. Android apps are built using various components, including Activities, Services, Broadcast Receivers, and Content Providers. These components serve different purposes and have distinct lifecycles. Activities are used for user interaction, services for background tasks, broadcast receivers for system-wide event handling, and content providers for managing shared data.The AndroidManifest.xml file is essential for declaring app components, permissions, and other settings. It informs the Android system about the app's components and capabilities. For instance, it specifies the minimum API level, declares hardware and software requirements, and defines intent filters to enable components to respond to specific actions.It's crucial to declare app requirements, such as device features and minimum Android API levels, to ensure compatibility with different devices and configurations. These declarations help in filtering the app's availability on Google Play for users with compatible devices.Android apps rely on resources separate from code, including images, layouts, strings, and more. These resources are stored in various directories and can be tailored for different device configurations. Providing alternative resources allows for optimization across different languages, screen sizes, orientations, and other factors.
Understanding these fundamentals is essential for developing Android applications effectively, ensuring compatibility, and providing a consistent user experience across a wide range of devices and configurations.
GIS: Projections and their distortions
0
In GIS, projections are helpful to take something plotted on a globe and convert it to a flat map that we can print or show on a screen. Unfortunately it also introduces distortions to the objects and features on the map. This not only distorts the objects visually, but the results for any spatial attribute calculations will also reflect this distortion (such as distance and area ). Below is a link to a quick primer on projections, types of distortions that can occur, and suggestions on how to choose a correct projection for your work.
Paraview UArizona HPC links (advanced)
0
These links take you to visualization resources supported by the University of Arizona's HPC visualization consultant ([rtdatavis.github.io](http://rtdatavis.github.io/)). The following links are specific to the Paraview program and the workflows that have been used my researchers at the U of Arizona. These links are distinct from the others posted in the beginner paraview access ci links from the University of Arizona in that they are for more complex workflows. The links included explain how to use the terminal with paraview (pvpython), and the steps to leverage HPC resources for headless batch rendering. The batch rendering tutorial is significantly more complex than the others so if you find yourself stuck please post on the https://ask.cyberinfrastructure.org/ and I will try to troubleshoot with you.
Performance Engineering Of Software Systems
0
A class from MITOpenCourseware that gives a hands on approach to building scalable and high-performance software systems. Topics include performance analysis, algorithmic techniques for high performance, instruction-level optimizations, caching optimizations, parallel programming, and building scalable systems.
Applications of Machine Learning in Engineering and Parameter Tuning Tutorial
0
Slides for a tutorial on Machine Learning applications in Engineering and parameter tuning given at the RMACC conference 2019.
Raftlib: Open Source library for concurrent data processing pipelines
0
Raftlib is an open-source C++ Library that provides a framework for implementing parallel and concurrent data processing pipelines. It is designed to simplify the development of high-performance data processing applications by abstracting away the complexities of parallelism, concurrency, and data flow management.
It enables stream/data-flow parallel computation by linking parallel compute kernels together using simple right shift operators, similar to C++ streams for string manipulation. RaftLib eliminates the need for explicit usage of traditional threading libraries such as pthreads, std::thread, or OpenMP, which can lead to non-deterministic behavior when misused.
Master’s in Cybersecurity Degree Essentials
0
Offers comprehensive information on various master's degree options in cybersecurity, including program details, admission requirements, and career opportunities, helping students make informed decisions about pursuing an advanced degree in cybersecurity.
What are LSTMs?
0
This reading will explain what a long short-term memory neural network is. LSTMs are a type of neural networks that rely on both past and present data to make decisions about future data. It relies on loops back to previous data to make such decisions. This makes LSTMs very good for predicting time-dependent behavior.
Python Data and Viz Training (CCEP Program)
0
ACCESS Resource Advisor
0
A web-based tool to help researchers identify appropriate ACCESS resources for their project.
AHPCC documentary
0
This link is a documentary website to use AHPCC.
Introduction to GPU/Parallel Programming using OpenACC
0
Introduction to the basics of OpenACC.
Electric field analyses for molecular simulations
0
Tool to compute electric fields from molecular simulations
Official Documentation of VisIt
0
VisIt is a prominent open-source, interactive parallel visualization and graphical analysis tool predominantly used for viewing scientific data. Its GitHub repository offers a detailed insight into the software's source code, documentation, and contribution guidelines. In particular, it offers useful examples on how it
MPI Resources
0
Workshop for beginners and intermediate students in MPI which includes helpful exercises. Open MPI documentation.
Pandas - Python
0
pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. It lets you store data in easy to manage and display data frames, with column names and datatypes.
ACCESS Support Portal
0
DAGMan for orchestrating complex workflows on HTC resources (High Throughput Computing)
0
DAGMan (Directed Acyclic Graph Manager) is a meta-scheduler for HTCondor. It manages dependencies between jobs at a higher level than the HTCondor Scheduler.
It is a workflow management system developed by the High-Throughput Computing (HTC) community, specifically for managing large-scale scientific computations and data analysis tasks. It enables users to define complex workflows as directed acyclic graphs (DAGs). In a DAG, nodes represent individual computational tasks, and the directed edges represent dependencies between the tasks. DAGMan manages the execution of these tasks and ensures that they are executed in the correct order based on their dependencies.
The primary purpose of DAGMan is to simplify the management of large-scale computations that consist of numerous interdependent tasks. By defining the dependencies between tasks in a DAG, users can easily express the order of execution and allow DAGMan to handle the scheduling and coordination of the tasks. This simplifies the development and execution of complex scientific workflows, making it easier to manage and track the progress of computations.
Fine-tuning LLMs with PEFT and LoRA
0
As LLMs get larger fine-tuning to the full extent can become difficult to train on consumer hardware. Storing and deploying these tuned models can also be quite expensive and difficult to store. With PEFT (parameter -efficent fine tuning), it approaches fine-tune on a smaller scale of model parameters while freezing most parameters of the pretrained LLMs. Basically it is providing full performance that which is similar if not better than full fine tuning while only having a small number of trainable parameters. This source explains that as well as going over LORA diagrams and a code walk through.
MDAnalysis - Python library for the analysis of molecular dynamics simulations
0
MDAnalysis is a python based library of tools for the analysis of molecular dynamics simulations. It is able to read and write many popular simulation formats including CHARMM, LAMMPS, GROMACS, and AMBER and more. This link contains the documentation pages of all MDAnalysis functions and has links to tutorials using Jupyter Notebooks.
Campus Champions Home Page
0
Campus Champions foster a dynamic environment for a diverse community of research computing and data professionals sharing knowledge and experience in digital research infrastructure.
AWS Tutorial For Beginners
0
An AWS Tutorial for Beginners is a course that teaches the basics of Amazon Web Services (AWS), a cloud computing platform that offers a wide range of services, including compute, storage, networking, databases, analytics, machine learning, and artificial intelligence.
Educause HEISC-800-171 Community Group
0
The purpose of this group is to provide a forum to discuss NIST 800-171 compliance. Participants are encouraged to collaborate and share effective practices and resources that help higher education institutions prepare for and comply with the NIST 800-171 standard as it relates to Federal Student Aid (FSA), CMMC, DFARS, NIH, and NSF activities.
The Use of High-Performance Computing Services in University Settings: A Usability Case Study of the University of Cincinnati’s High-Performance Computing Cluster
0
This presentation gives a detailed breakdown of the outcome of my master's thesis which was focused on making HPC Clusters accessible across all disciplines in a university setting "Our Case Study was the university of Cincinnati".