Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
phenoACCESS-24 workshop program materials
0
phenoACCESS-24: Workshop on Research Computing and Plant Phenotyping
High-throughput plant phenotyping is computationally intensive, requiring data storage, data processing and analysis, research computing expertise, and mechanisms for data sharing. This workshop is aimed at research computing workforce development by addressing questions such as what is plant phenotyping; what types of data are collected; what are the preprocessing and analytical needs; what tools and platforms exist for data capture, management, analysis, and storage; and how best to collaborate and engage with phenotyping researchers. The full-day agenda will include speakers (scientists and research compute staff); panel discussions (how to work with research computing staff and facilities; how to engage with phenotyping scientists), and networking opportunities (meet-and-greet, ice breakers, small group discussions). The videos and slide decks for the talks are included on the linked page.
Ask.CI Q&A Platform for Research Computing
0
Setting up PyFR flow solver on clusters
0
These instructions were executed on the FASTER and Grace cluster computing facilities at Texas A&M University. However, the process can be applied to other clusters with similar environments. For local installation, please refer to the PyFR documentation.
Please note that these instructions were valid at the time of writing. Depending on the time you're executing these, the versions of the modules may need to be updated.
1. Loading Modules
The first step involves loading pre-installed software libraries required for PyFR. Execute the following commands in your terminal to load these modules:
module load foss/2022b
module load libffi/3.4.4
module load OpenSSL/1.1.1k
module load METIS/5.1.0
module load HDF5/1.13.1
2. Python Installation from Source
Choose a location for Python 3.11.1 installation, preferably in a .local directory. Navigate to the directory containing the Python 3.11.1 source code. Then configure and install Python:
cd $INSTALL/Python-3.11.1/
./configure --prefix=$LOCAL --enable-shared --with-system-ffi --with-openssl=/sw/eb/sw/OpenSSL/1.1.1k-GCCcore-11.2.0/ PKG_CONFIG_PATH=$LOCAL/pkgconfig LDFLAGS=/usr/lib64/libffi.so.6.0.2
make clean; make -j20; make install;
3. Virtual Environment Setup
A virtual environment allows you to isolate Python packages for this project from others on your system. Create and activate a virtual environment using:
pip3.11 install virtualenv
python3.11 -m venv pyfr-venv
. pyfr-venv/bin/activate
4. Install PyFR Dependencies
Several Python packages are required for PyFR. Install these packages using the following commands:
pip3 install --upgrade pip
pip3 install --no-cache-dir wheel
pip3 install --no-cache-dir botorch pandas matplotlib pyfr
pip3 uninstall -y pyfr
5. Install PyFR from Source
Finally, navigate to the directory containing the PyFR source code, and then install PyFR:
cd /scratch/user/sambit98/github/PyFR/
python3 setup.py develop
Congratulations! You've successfully set up PyFR on the FASTER and Grace cluster computing facilities. You should now be able to use PyFR for your computational fluid dynamics simulations.
AI Institutes Cyberinfrastructure Documents: SAIL Meeting
0
Materials from the SAIL meeting (https://aiinstitutes.org/2023/06/21/sail-2023-summit-for-ai-leadership/). A space where AI researchers can learn about using ACCESS resources for AI applications and research.
A visual introduction to Gaussian Belief Propagation
0
This website is an interactive introduction to Gaussian Belief Propagation (GBP). A probabilistic inference algorithm that operates by passing messages between the nodes of arbitrarily structured factor graphs. A special case of loopy belief propagation, GBP updates rely only on local information and will converge independently of the message schedule. The key argument is that, given recent trends in computing hardware, GBP has the right computational properties to act as a scalable distributed probabilistic inference framework for future machine learning systems.
Spatial Data Science in the Cloud (Alpine HPC) using Python
0
Spatial Data Science is a growing field across a wide range of industries and disciplines. The open-source programming language Python has many libraries that support spatial analysis, but what do you do when your computer is unable to tackle the massive file sizes of high-resolution data and the computing power required in your analysis?
There materials have been prepared to teach you spatial data science and how to execute your analysis using a high-performance computer (HPC).
Info about retiring of R GIS packages rgdal, rgeos, maptools in 2023
0
R GIS packages "rgdal", "rgeos", and "maptools" are package set to be archived and no longer supported by end of 2023. Many other R GIS packages are build on top of these packages, including "sp" and "raster". The packages recommended as replacement for "sp" is "sf" and the replacement for "raster" is "terra". Below are links to published articles regarding this transition. Additionally, I am including links to the documentation for the new packages recommended to be used "sf" and "terra".
Singularity/Apptainer User Manuals
0
Singularity/Apptainer is a free and open-source container platform that allows users to build and run containers on high performance computing resources.
SingularityCE is the community edition of Singularity maintained by Sylabs, a company that also offers commercial Singularity products and services.
Apptainer is a fork of Singularity, maintained by the Linux foundation, a community of developers and users who are passionate about open source software.
Examples of code using JSON nlohmann header only Library for C++
0
This code showcases how to work with the header-only nlohmann JSON library for C++. In order to compile, change the extensions from json_test.txt to json_test.cpp and test.txt to test.json. You must also download the header files from https://github.com/nlohmann/json. Complilation instructions are at the bottom of json_test. This code is very helpful for creating config files, for example.
Solving differential equations with Physics-informed Neural Network
0
Differential equations, the backbone of countless physical phenomena, have traditionally been solved using numerical methods or analytical techniques. However, the advent of deep learning introduces an intriguing alternative: Physics-Informed Neural Networks (PINNs). By leveraging the representational power of neural networks and integrating physical laws (like differential equations), PINNs offer a novel approach to solving complex problems. This guide walks through an implementation of a PINN to solve DEs such as the logistic equation.
R for Research Scientists
0
A book for researchers who contribute code to R projects: This booklet is the result of my work with the Social Cognition for Social Justice lab. It was developed in response to questions I was getting from students; both grad students that were making software design decisions, and undergraduates who were using things like version control for the first time. Although many tutorials and resources exist for these topics, there was not a single source that I thought covered just enough material to build up to the workflow used by the lab without extraneous detail.
Master’s in Cybersecurity Degree Essentials
0
Offers comprehensive information on various master's degree options in cybersecurity, including program details, admission requirements, and career opportunities, helping students make informed decisions about pursuing an advanced degree in cybersecurity.
FreeSurfer Tutorials
0
The official MGH / Harvard tutorial page for FreeSurfer. The FreeSurfer group has provided and designed a series of tutorials for using FreeSurfer and for getting acquainted with the concepts needed to perform its various modes of analysis and processing of MRI data. The tutorials are designed to be followed along in a terminal window where commands can be copy/pasted instead of typed.
Fine-tuning LLMs with PEFT and LoRA
0
As LLMs get larger fine-tuning to the full extent can become difficult to train on consumer hardware. Storing and deploying these tuned models can also be quite expensive and difficult to store. With PEFT (parameter -efficent fine tuning), it approaches fine-tune on a smaller scale of model parameters while freezing most parameters of the pretrained LLMs. Basically it is providing full performance that which is similar if not better than full fine tuning while only having a small number of trainable parameters. This source explains that as well as going over LORA diagrams and a code walk through.
Better Scientific Software (BSSw)
0
The Better Scientific Software (BSSw) project provides a community to collaborate and learn about best practices in scientific software development. Software—the foundation of discovery in computational science & engineering—faces increasing complexity in computational models and computer architectures. BSSw provides a central hub for the community to address pressing challenges in software productivity, quality, and sustainability.
Beautiful Soup - Simple Python Web Scraping
0
This package lets you easily scrape websites and extract information based on html tags and various other metadata found in the page. It can be useful for large-scale web analysis and other tasks requiring automated data gathering.
Bioinformatics Workflow Management with Nextflow
0
Nextflow is an open-source, domain-specific language and workflow manager designed for the execution and coordination of scientific and data-intensive computational workflows. It was specifically created to address the challenges faced by researchers and scientists when dealing with complex and scalable computational pipelines, particularly in fields such as bioinformatics, genomics, and data analysis.
Here provided some links to start with.
marimo | a next generation python notebook
0
Introduction seminar for new reactive python notebook from marimo ambassador.
AHPCC documentary
0
This link is a documentary website to use AHPCC.
Neural Networks in Julia
0
Making a neural network has never been easier! The following link directs users to the Flux.jl package, the easiest way of programming a neural network using the Julia programming language. Julia is the fastest growing software language for AI/ML and this package provides a faster alternative to Python's TensorFlow and PyTorch with a 100% Julia native programming and GPU support.
Displaying Scientific Data with Tableau
0
Tableau is a popular and capable software product for creating charts that present data and dashboards that allow you to explore data. It is typically used to present business or statistical data, but can also create compelling visualizations of scientific data. However, scientific data is often generated or stored in formats that are not immediately accessible by Tableau. This seminar will explore the data formats that work best with Tableau and the available mechanisms for generating scientific data in (or converting it to) those formats so that you can apply the full power of Tableau to create the best possible visualizations of your data.
MATLAB with other Programming Languages
0
MATLAB is a really useful tool for data analysis among other computational work. This tutorial takes you through using MATLAB with other programming languages including C, C++, Fortran, Java, and Python.
Time-Series LSTMs Python Walkthrough
0
A walkthrough (with a Google Colab link) on how to implement your own LSTM to observe time-dependent behavior.
MPI Resources
0
Workshop for beginners and intermediate students in MPI which includes helpful exercises. Open MPI documentation.
Jetstream2 Docs Site
0
Jetstream2 makes cutting-edge high-performance computing and software easy to use for your research regardless of your project’s scale—even if you have limited experience with supercomputing systems.Cloud-based and on-demand, the 24/7 system includes discipline-specific apps. You can even create virtual machines that look and feel like your lab workstation or home machine, with thousands of times the computing power.