Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
MDAnalysis - Python library for the analysis of molecular dynamics simulations
0
MDAnalysis is a python based library of tools for the analysis of molecular dynamics simulations. It is able to read and write many popular simulation formats including CHARMM, LAMMPS, GROMACS, and AMBER and more. This link contains the documentation pages of all MDAnalysis functions and has links to tutorials using Jupyter Notebooks.
EasyBuild Documentation
0
EasyBuild is a software installation framework that allows administrators to easily build and install software on high-performance computing (HPC) systems. It supports a wide range of software packages, toolchains, and compilers.
Supported software are found in the EasyConfigs repository, one of several resositories in EasyBuild project.
Trusted CI Resources Page
0
Very helpful list of external resources from Trusted CI
Learn Python Online
0
Learn Python online with these distance learning courses.
Docker - Containerized, reproducible workflows
0
Docker allows for containerization of any task - basically a smaller, scalable version of a virtual machine. This is very useful when transferring work across computing environments, as it ensures reproducibility.
What is fairness in ML?
0
This article discusses the importance of fairness in machine learning and provides insights into how Google approaches fairness in their ML models.
The article covers several key topics:
Introduction to fairness in ML: It provides an overview of why fairness is essential in machine learning systems, the potential biases that can arise, and the impact of biased models on different communities.
Defining fairness: The article discusses various definitions of fairness, including individual fairness, group fairness, and disparate impact. It explains the challenges in achieving fairness due to trade-offs and the need for thoughtful considerations.
Addressing bias in training data: It explores how biases can be present in training data and offers strategies to identify and mitigate these biases. Techniques like data preprocessing, data augmentation, and synthetic data generation are discussed.
Fairness in ML algorithms: The article examines the potential biases that can arise from different machine learning algorithms, such as classification and recommendation systems. It highlights the importance of evaluating and monitoring models for fairness throughout their lifecycle.
Fairness tools and resources: It showcases various tools and resources available to practitioners and developers to help measure, understand, and mitigate bias in machine learning models. Google's TensorFlow Extended (TFX) and What-If Tool are mentioned as examples.
Google's approach to fairness: The article highlights Google's commitment to fairness and the steps they take to address fairness challenges in their ML models. It mentions the use of fairness indicators, ongoing research, and partnerships to advance fairness in AI.
Overall, the article provides a comprehensive overview of fairness in machine learning and offers insights into Google's approach to building fair ML models.
Vulkan Support Survey across Systems
0
It's not uncommon to see beautiful visualizations in HPC center galleries, but the majority of these are either rendered off the HPC or created using programs that run on OpenGL or custom rasterization techniques. To put it simply the next generation of graphics provided by OpenGL's successor Vulkan is strangely absent in the super computing world. The aim of this survey of available resources is to determine the systems that can support Vulkan workflows and programs. This will assist users in getting past some of the first hurdles in using Vulkan in HPC contexts.
ACCESS Support Portal
0
Official Python Documentation
0
The official documentation for Python 3.11.5. Python comes with a lot of features built into the language, so it is worth taking a look as you code.
NITRC
0
The Neuroimaging Tools and Resources Collaboratory (NITRC) is a neuroimaging informatics knowledge environment for MR, PET/SPECT, CT, EEG/MEG, optical imaging, clinical neuroinformatics, imaging genomics, and computational neuroscience tools and resources.
Understanding LLM Fine-tuning
0
With the recent uprising of LLM's many business are looking at way to adopt these LLMs and fine-tuning these models on specfic data sets to ensure accuracy. These models when fine-tuned can be optimal for fulfilling the specific needs of a company. This site explains explicitly when, how, and why models should be trained. It goes over various strategies for LLM fine -tuning.
UNIX/command line basics tutorial
0
Introductory training materials for working on the UNIX command line.
Open-Source Server Virtualization Platform
0
Proxmox Virtual Environment is a hyper-converged infrastructure open-source software. It is a hosted hypervisor that can run operating systems including Linux and Windows on x64 hardware.
Mechanism and Implementation of Various MPI Libraries
0
There is a detailed explanation about communication routines and managing methods of different MPI libraries, as well as several exercises designed for users to get familiar with the implementation of MPI build process.