Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
fast.ai
0
Fastai offers many tools to people working with machine learning and artifical intelligence including tutorials on PyTorch in addition to their own library built on PyTorch, news articles, and other resources to dive into this realm.
Working with Python on HPC Clusters
0
This tutorial series and documentation covers topics on using Python on HPC clusters. The specific steps are based on the HOPPER cluster at George Mason University in Fairfax, VA. They should be implementable on most HPC clusters that have the SLURM scheduler installed, the Environment Modules system for managing packages and Open onDemand for a web-based GUI to access the cluster resources.
Jetstream2 Docs Site
0
Jetstream2 makes cutting-edge high-performance computing and software easy to use for your research regardless of your project’s scale—even if you have limited experience with supercomputing systems.Cloud-based and on-demand, the 24/7 system includes discipline-specific apps. You can even create virtual machines that look and feel like your lab workstation or home machine, with thousands of times the computing power.
The Official Documentation of Pandas
0
Pandas is one of the most essential Python libraries for data analysis and manipulation. It provides high-performance, easy-to-use data structures, and data analysis tools for the Python programming language. The official documentation serves as an in-depth guide to using this powerful tool including explanations and examples.
QGIS Processing Executor
0
Running QGIS tools from the command line
Numpy - a Python Library
0
Numpy is a python package that leverages types and compiled C code to make many math operations in Python efficient. It is especially useful for matrix manipulation and operations.
What is fairness in ML?
0
This article discusses the importance of fairness in machine learning and provides insights into how Google approaches fairness in their ML models.
The article covers several key topics:
Introduction to fairness in ML: It provides an overview of why fairness is essential in machine learning systems, the potential biases that can arise, and the impact of biased models on different communities.
Defining fairness: The article discusses various definitions of fairness, including individual fairness, group fairness, and disparate impact. It explains the challenges in achieving fairness due to trade-offs and the need for thoughtful considerations.
Addressing bias in training data: It explores how biases can be present in training data and offers strategies to identify and mitigate these biases. Techniques like data preprocessing, data augmentation, and synthetic data generation are discussed.
Fairness in ML algorithms: The article examines the potential biases that can arise from different machine learning algorithms, such as classification and recommendation systems. It highlights the importance of evaluating and monitoring models for fairness throughout their lifecycle.
Fairness tools and resources: It showcases various tools and resources available to practitioners and developers to help measure, understand, and mitigate bias in machine learning models. Google's TensorFlow Extended (TFX) and What-If Tool are mentioned as examples.
Google's approach to fairness: The article highlights Google's commitment to fairness and the steps they take to address fairness challenges in their ML models. It mentions the use of fairness indicators, ongoing research, and partnerships to advance fairness in AI.
Overall, the article provides a comprehensive overview of fairness in machine learning and offers insights into Google's approach to building fair ML models.
Bridges-2 Home Page
0
Landing Page for Bridges-2 information
MATLAB bioinformatics toolbox
0
Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing (NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox functions, you can read genomic and proteomic data from standard file formats such as SAM, FASTA, CEL, and CDF, as well as from online databases such as the NCBI Gene Expression Omnibus and GenBank.
Spack Documentation
0
Spack is a package manager for supercomputers that can help administrators install scientific software and libraries for multiple complex software stacks.
phenoACCESS-24 workshop program materials
0
phenoACCESS-24: Workshop on Research Computing and Plant Phenotyping
High-throughput plant phenotyping is computationally intensive, requiring data storage, data processing and analysis, research computing expertise, and mechanisms for data sharing. This workshop is aimed at research computing workforce development by addressing questions such as what is plant phenotyping; what types of data are collected; what are the preprocessing and analytical needs; what tools and platforms exist for data capture, management, analysis, and storage; and how best to collaborate and engage with phenotyping researchers. The full-day agenda will include speakers (scientists and research compute staff); panel discussions (how to work with research computing staff and facilities; how to engage with phenotyping scientists), and networking opportunities (meet-and-greet, ice breakers, small group discussions). The videos and slide decks for the talks are included on the linked page.
Trusted CI
0
The mission of Trusted CI is to lead in the development of an NSF Cybersecurity Ecosystem with the workforce, knowledge, processes, and cyberinfrastructure that enables trustworthy science and NSF’s vision of a nation that is a global leader in research and innovation.
Header-only C++ JSON library
0
JSON is a lightweight format for storing and transporting data, for example in a config file. This library is header-only, and has easy-to-read documentation. It is a C++ library.
Machine Learning in R online book
0
The free online book for the mlr3 machine learning framework for R. Gives a comprehensive overview of the package and ecosystem, suitable from beginners to experts. You'll learn how to build and evaluate machine learning models, build complex machine learning pipelines, tune their performance automatically, and explain how machine learning models arrive at their predictions.
Fundamentals of Cloud Computing
0
An introduction to Cloud Computing
Mechanism and Implementation of Various MPI Libraries
0
There is a detailed explanation about communication routines and managing methods of different MPI libraries, as well as several exercises designed for users to get familiar with the implementation of MPI build process.
The Use of High-Performance Computing Services in University Settings: A Usability Case Study of the University of Cincinnati’s High-Performance Computing Cluster
0
This presentation gives a detailed breakdown of the outcome of my master's thesis which was focused on making HPC Clusters accessible across all disciplines in a university setting "Our Case Study was the university of Cincinnati".
Set Up VSCode for Python and Github
0
VSCode is a popular IDE that runs on Windows, MacOS, and Linux. This tutorial will explain how to get set up with VSCode to code in Python. It will also provide a tutorial on how to set up Github integration within VSCode.
NITRC
0
The Neuroimaging Tools and Resources Collaboratory (NITRC) is a neuroimaging informatics knowledge environment for MR, PET/SPECT, CT, EEG/MEG, optical imaging, clinical neuroinformatics, imaging genomics, and computational neuroscience tools and resources.
Fine-tuning LLMs with PEFT and LoRA
0
As LLMs get larger fine-tuning to the full extent can become difficult to train on consumer hardware. Storing and deploying these tuned models can also be quite expensive and difficult to store. With PEFT (parameter -efficent fine tuning), it approaches fine-tune on a smaller scale of model parameters while freezing most parameters of the pretrained LLMs. Basically it is providing full performance that which is similar if not better than full fine tuning while only having a small number of trainable parameters. This source explains that as well as going over LORA diagrams and a code walk through.
Introduction to Vizualization on HPC Using Python
0
This workshop has an introduction to the concepts of visualization followed by hands on exercises. The concepts section has Speaker Notes, and the hands on section has an accompanying Jupyter notebook.
The workshop is one in a series of Introduction to HPC
NERSC Training and Tutorials
0
A comprehensive collection of NERSC developed training and tutorial events, offered on regular schedules. All sessions are archived, including slide decks, video recordings, and software examples as are available. Some examples of past training and tutorial topics are listed below
Deep Learning for Sciences Webinar Series
BerkeleyGW Tutorial Workshop
VASP Trainings
Timemory Software Monitoring Tutorial, April 2021
HPCToolkit to Measure and Analyzing GPU Applications Performance Tutorial
Totalview Tutorial
NVidia HPCSDK - OpenMP Target Offload Training
Parallelware Training Series
ARM Debugging and Profiling Tools Tutorial
Roofline on NVIDIA GPUs
GPUs for Science events
3-part OpenACC Training Series
9-part CUDA Training Series
InsideHPC
0
InsideHPC is an informational site offers videos, research papers, articles, and other resources focused on machine learning and quantum computing among other topics within high performance computing.
Representation Learning in Deep Learning
0
Representation learning is a fundamental concept in machine learning and artificial intelligence, particularly in the field of deep learning. At its core, representation learning involves the process of transforming raw data into a form that is more suitable for a specific task or learning objective. This transformation aims to extract meaningful and informative features or representations from the data, which can then be used for various tasks like classification, clustering, regression, and more.
Online Bachelor's in Data Science Program Guide - TechGuide
0
The realm of data science is one that onlookers regard with curiosity and respect. There are a lot of unknowns in this area of study that only recently became hugely relevant. It is important to get the facts on how expertise in data science is transforming the world. This article features what a bachelor’s degree means in today’s market and the future.