Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
Representation Learning in Deep Learning
0
Representation learning is a fundamental concept in machine learning and artificial intelligence, particularly in the field of deep learning. At its core, representation learning involves the process of transforming raw data into a form that is more suitable for a specific task or learning objective. This transformation aims to extract meaningful and informative features or representations from the data, which can then be used for various tasks like classification, clustering, regression, and more.
Awesome Jupyter Widgets (for building interactive scientific workflows or science gateway tools)
0
A curated list of awesome Jupyter widget packages and projects for building interactive visualizations for Python code
Ask.CI Q&A Platform for Research Computing
0
MATLAB with other Programming Languages
0
MATLAB is a really useful tool for data analysis among other computational work. This tutorial takes you through using MATLAB with other programming languages including C, C++, Fortran, Java, and Python.
Managing and Optimizing Your Jobs on HPC
0
An overview of tools and methods to manage and optimize jobs and HPC workflows
Paraview UArizona HPC links (beginner)
0
These links take you to visualization resources supported by the University of Arizona's HPC visualization consultant (rtdatavis.github.io). The following links are specific to the Paraview program and the workflows that have been used my researchers at the U of Arizona. Some of the pages linked are very beginner friendly: getting started, working with cameras and keyframes for rendering, visualizing external files (netcdf climate data), graphs and data exporting.
Many of the workflows involve using remote desktops via the Open On Demand interface, but if this isn't set up at your university you can use paraview locally on a desktop. Feel free to post on access ci https://ask.cyberinfrastructure.org/ if you need assistance getting a paraview gui open for your work on HPC.
Ultimate guide to Unix
0
Unix is incredibly common and useful. This website provides all the common commands and explanations for one to get started with a unix system.
Slurm User Group Mailing List
0
Anvil Home Page
0
Federated CI Resources
0
Discussion about contributing cycles to the Open Science Grid.
Samtools Documentation
0
Samtools is a suite of programs for interacting with high-throughput sequencing data, especially in the SAM/BAM format. It offers various utilities for processing, analyzing, and managing sequence data generated from next-generation sequencing (NGS) experiments. Samtools is widely used in bioinformatics and genomics research for tasks such as read alignment, variant calling, and data manipulation.
ConnectCI
0
Connect.Cybinfrastructure is a family of portals, each representing a program that is serving a segment of the research computing and data community. Each portal provides program-specific information, as well a custom "view" into a common database. The portal was originally developed to support project workflows and a knowledge base of self service learning resources for the Northeast Cyberteam. Subsequently, it was expanded to provide support to multiple cyberteams and other research computing communities of practice. We welcome additional communities, please contact us if you are interested in participating. Central to the Portal is an extensive and ever-evolving tagging infrastructure which informs every aspect of the Portal. The tag taxonomy was initially developed by the Northeast Cyberteam to categorize subject matter relevant to practitioners of Research Computing Facilitation and is ever changing due to the frequent introduction of new technology in domains that characterize the field of research computing.
Charliecloud User Group
0
Announcements for for users and developers of Charliecloud, which provides lightweight user-defined software stacks for high-performance computing.
How to Get the Most Out of a Mentoring Relationship by The Plank Center
0
Backed by collegiate white papers, top industry professionals, and researchers, The Plank Center’s Mentorship Guide offers basic tips and tricks on how to get the most out of a mentorship relationship. This easy-to-follow guide supplements mentorship programs, lesson plans, and professional relationships.
GDAL Multi-threading
0
Multi-threading guidance when using GDAL.
TensorFlow for Deep Neural Networks
0
TensorFlow is a powerful framework for Deep Learning, developed by google. This specifically is their python package, which is easy to use and can be used to train incredibly powerful models.
Probabilistic Semantic Data Association for Collaborative Human-Robot Sensing
0
Humans cannot always be treated as oracles for collaborative sensing. Robots thus need to maintain beliefs over unknown world states when receiving semantic data from humans, as well as account for possible discrepancies between human-provided data and these beliefs. To this end, this paper introduces the problem of semantic data association (SDA) in relation to conventional data association problems for sensor fusion. It then, develops a novel probabilistic semantic data association (PSDA) algorithm to rigorously address SDA in general settings. Simulations of a multi-object search task show that PSDA enables robust collaborative state estimation under a wide range of conditions.
Installing Rocky Linux Operating System
0
Rocky Linux is an open-source enterprise operating system. It is compatible with Red Hat Enterprise Linux (RHEL). It is a community-driven project that provides a stable and reliable platform for production workloads. It is one of the best alternatives to Opensource CentOS, since Centos will be on end of life (EoL) soon in 2024 by shifting to CentOS Stream.
Implementing Markov Processes with Julia
0
The following link provides an easy method of implementing Markov Decision Processes (MDP) in the Julia computing language. MDPs are a class of algorithms designed to handle stochastic situations where the actor has some level of control. For example, used at a low level, MDPs can be used to control an inverted pendulum, but applied in higher level decision making the can also decide when to take evasive action in air traffic management. MDPs can also be extended to the partially observable domain to form the Partially Observable Markov Decision Process (POMDP). This link contains a wealth of information to show one can easily implement basic POMDP and MDP algorithms and apply well known online and offline solvers.
Thrust resources
0
Thrust is a CUDA library that optimizes parallelization on the GPU for you. The Thrust tutorial is great for beginners. The documentation is helpful for anyone using Thrust.
RRCoP Resources Page
0
Very helpful list of Regulated Research Community of Practice's collaborating communities.
Data Imputation Methods for Climate Data and Mortality Data
0
This slices and videos introduced how to use K-Nearest-Neighbors method to impute climate data and how to use Bayesian Spatio-Temporal models in R-INLA to impute mortality data. The demos will be added soon.
Training an LSTM Model in Pytorch
0
This google colab notebook tutorial demonstrates how to create and train an lstm model in pytorch to be used to predict time series data. An airline passenger dataset is used as an example.
Use Windows Subsystem for Linux for HPC Command Line Access from Windows
0
Windows Subsystem for Linux (WSL) provides a Linux environment for Windows users to access HPC resources fast and efficiently.
Numba: Compiler for Python
0
Numba is a Python compiler designed for accelerating numerical and array operations, enabling users to enhance their application's performance by writing high-performance functions in Python itself. It utilizes LLVM to transform pure Python code into optimized machine code, achieving speeds comparable to languages like C, C++, and Fortran. Noteworthy features include dynamic code generation during import or runtime, support for both CPU and GPU hardware, and seamless integration with the Python scientific software ecosystem, particularly Numpy.