Knowledge Base Resources
These resources are contributed by researchers, facilitators, engineers, and HPC admins. Please upvote resources you find useful!
Official Python Documentation
0
The official documentation for Python 3.11.5. Python comes with a lot of features built into the language, so it is worth taking a look as you code.
Active inference textbook
0
This textbook is the first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines including computational neurosciences, machine learning, artificial intelligence, and robotics. It was published in 2022 and it's open access at this time. The contents in this textbook should be educational to those who want to understand how the free energy principle is applied to the normative behavior of living organisms and who want to widen their knowledge of sequential decision making under uncertainty.
Machine Learning in Astrophysics
0
Machine learning is becoming increasingly important in field with large data such as astrophysics. AstroML is a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, matplotlib, and astropy allowing for a range of statistical and machine learning routines to analyze astronomical data in Python. In particular, it has loaders for many open astronomical datasets with examples on how to visualize such complicated and large datasets.
Geocomputation with R (Free Reference Book)
0
Below is a link for a book that focuses on how to use "sf" and "terra" packages for GIS computations. As of 5/1/2023, this book is up to date and examples are error free. The book has a lot of information but provides a good overview and example workflows on how to use these tools.
AI for improved HPC research - Cursor and Termius - Powerpoint
0
These slides provide an introduction on how Termius and Cursor, two new and freemium apps that use AI to perform more efficient work, can be used for faster HPC research.
Anvil Home Page
0
Purdue University is the home of Anvil, a powerful supercomputer that provides advanced computing capabilities to support a wide range of computational and data-intensive research spanning from traditional high-performance computing to modern artificial intelligence applications.
Trusted CI Resources Page
0
Very helpful list of external resources from Trusted CI
Performance Engineering Of Software Systems
0
A class from MITOpenCourseware that gives a hands on approach to building scalable and high-performance software systems. Topics include performance analysis, algorithmic techniques for high performance, instruction-level optimizations, caching optimizations, parallel programming, and building scalable systems.
File management of Visual Studio Code on clusters
0
Visual Studio Code, commonly known as VSCode, is a popular tool used by programmers worldwide. It serves as a text editor and an Integrated Development Environment (IDE) that supports a wide variety of programming languages. One of its key features is its extensive library of extensions. These extensions add on to the basic functionalities of VSCode, making coding more efficient and convenient.
However, there's a catch. When these extensions are installed and used frequently, they generate a multitude of files. These files are typically stored in a folder named .vscode-extension within your home directory. On a cluster computing facility such as the FASTER and Grace clusters at Texas A&M University, there's a limitation on how many files you can have in your home directory. For instance, the file number limit could be 10000, while the .vscode-extension directory can hold around 4000 temporary files even with just a few extensions. Thus, if the number of files in your home directory surpasses this limit due to VSCode extensions, you might face some issues. This restriction can discourage users from taking full advantage of the extensive features and extensions offered by the VSCode editor.
To overcome this, we can shift the .vscode-extension directory to the scratch space. The scratch space is another area in the cluster where you can store files and it usually has a much higher limit on the number of files compared to the home directory. We can perform this shift smoothly using a feature called symbolic links (or symlinks for short). Think of a symlink as a shortcut or a reference that points to another file or directory located somewhere else.
Here's a step-by-step guide on how to move the .vscode-extension directory to the scratch space and create a symbolic link to it in your home directory:
1. Copy the .vscode-extension directory to the scratch space: Using the cp command, you can copy the .vscode-extension directory (along with all its contents) to the scratch space. Here's how:
cp -r ~/.vscode-extension /scratch/user
Don't forget to replace /scratch/user with the actual path to your scratch directory.
2. Remove the original .vscode-extension directory: Once you've confirmed that the directory has been copied successfully to the scratch space, you can remove the original directory from your home space. You can do this using the rm command:
rm -r ~/.vscode-extension
It's important to make sure that the directory has been copied to the scratch space successfully before deleting the original.
3. Create a symbolic link in the home directory: Lastly, you'll create a symbolic link in your home directory that points to the .vscode-extension directory in the scratch space. You can do this as follows:
ln -s /scratch/user/.vscode-extension ~/.vscode-extension
By following this process, all the files generated by VSCode extensions will be stored in the scratch space. This prevents your home directory from exceeding its file limit. Now, when you access ~/.vscode-extension, the system will automatically redirect you to the directory in the scratch space, thanks to the symlink. This method ensures that you can use VSCode and its various extensions without worrying about hitting the file limit in your home directory.
Intro to Machine Learning on HPC
0
This tutorial introduces machine learning on high performance computing (HPC) clusters. While it focuses on the HPC clusters at The University of Arizona, the content is generic enough that it can be used by students from other institutions.
Fundamentals of R Programming
0
This course is an introduction to the R programming language and covers the fundamental concepts needed to operate in the R environment. This course was taught for the ACCESS community on September 26, 2023, but the materials for the course are still available on the ACES cluster and can be completed independently. All materials are presented as learnR notebooks and cover several topics, including data types, variables, built-in functions, data structures, and plotting.
FreeSurfer Tutorials
0
The official MGH / Harvard tutorial page for FreeSurfer. The FreeSurfer group has provided and designed a series of tutorials for using FreeSurfer and for getting acquainted with the concepts needed to perform its various modes of analysis and processing of MRI data. The tutorials are designed to be followed along in a terminal window where commands can be copy/pasted instead of typed.
AI Institutes Cyberinfrastructure Documents: SAIL Meeting
0
Materials from the SAIL meeting (https://aiinstitutes.org/2023/06/21/sail-2023-summit-for-ai-leadership/). A space where AI researchers can learn about using ACCESS resources for AI applications and research.
Introduction to Parallel Programming for GPUs with CUDA
0
This tutorial provides a comprehensive introduction to CUDA programming, focusing on essential concepts such as CUDA thread hierarchy, data parallel programming, host-device heterogeneous programming model, CUDA kernel syntax, GPU memory hierarchy, and memory optimization techniques like global memory coalescing and shared memory bank conflicts. Aimed at researchers, students, and practitioners, the tutorial equips participants with the skills needed to leverage GPU acceleration for scalable computation, particularly in the context of AI.
UNIX/command line basics tutorial
0
Introductory training materials for working on the UNIX command line.
Introduction to GPU/Parallel Programming using OpenACC
0
Introduction to the basics of OpenACC.
How to Get the Most Out of a Mentoring Relationship by The Plank Center
0
Backed by collegiate white papers, top industry professionals, and researchers, The Plank Center’s Mentorship Guide offers basic tips and tricks on how to get the most out of a mentorship relationship. This easy-to-follow guide supplements mentorship programs, lesson plans, and professional relationships.
AI powered VsCode Editor
0
**Cursor: The AI-Powered Code Editor**
Cursor is a cutting-edge, AI-first code editor designed to revolutionize the way developers write, debug, and understand code. Built upon the premise of pair-programming with artificial intelligence, Cursor harnesses the capabilities of advanced AI models to offer real-time coding assistance, bug detection, and code generation.
**How Cursor Benefits High-Performance Computing (HPC) Work:**
1. **Efficient Code Development:** With AI-assisted code generation, researchers and developers in the HPC realm can quickly write optimized code for simulations, data processing, or modeling tasks, reducing the time to deployment.
2. **Debugging Assistance:** Handling complex datasets and simulations often lead to intricate bugs. Cursor's capability to automatically investigate errors and determine root causes can save crucial time in the HPC workflow.
3. **Tailored Code Suggestions:** Cursor's AI provides context-specific code suggestions by understanding the entire codebase. For HPC applications where performance is paramount, this means receiving recommendations that align with optimization goals.
4. **Improved Code Quality:** With AI-driven bug scanning and linter checks, Cursor ensures that HPC codes are not only fast but also robust and free of common errors.
5. **Easy Integration:** Being a fork of VSCode, Cursor allows seamless migration, ensuring that developers working in HPC can swiftly integrate their existing VSCode setups and extensions.
In essence, for HPC tasks that demand speed, precision, and robustness, Cursor acts as an invaluable co-pilot, guiding developers towards efficient and optimized coding solutions.
It is free if you provide your own OPEN AI API KEY.
Horovod: Distributed deep learning training framework
0
Horovod is a distributed deep learning training framework. Using horovod, a single-GPU training script can be scaled to train across many GPUs in parallel. The library supports popular deep learning framework such as TensorFlow, Keras, PyTorch, and Apache MXNet.
Training an LSTM Model in Pytorch
0
This google colab notebook tutorial demonstrates how to create and train an lstm model in pytorch to be used to predict time series data. An airline passenger dataset is used as an example.
Hour of Ci
0
Hour of Cyberinfrastructure (Hour of CI) is a nationwide campaign to introduce undergraduate and graduate students to cyberinfrastructure and geographic information science (GIS).
Pandas - Python
0
pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. It lets you store data in easy to manage and display data frames, with column names and datatypes.
OpenMP and Multithreaded Jobs in GRASS
0
Techniques and support for multithreaded geospatial data processing in GRASS.