Online Master's in Business Analytics Program Guide - TechGuide
0
A degree in business analytics looks different in today’s world than it did a decade ago. In its most current application, business analytics uses modern data science and capabilities in machine learning (ML). The magic comes into play when these are leveraged for strategic planning.
Warewulf documentation
0
Warewulf is an operating system provisioning platform for Linux that is designed to produce secure, scalable, turnkey cluster deployments that maintain flexibility and simplicity. It can be used to setup a stateless provisioning in HPC environment.
R for Research Scientists
0
A book for researchers who contribute code to R projects: This booklet is the result of my work with the Social Cognition for Social Justice lab. It was developed in response to questions I was getting from students; both grad students that were making software design decisions, and undergraduates who were using things like version control for the first time. Although many tutorials and resources exist for these topics, there was not a single source that I thought covered just enough material to build up to the workflow used by the lab without extraneous detail.
ACCESS Video Learning Center
0
A library of short videos about ACCESS allocations, resources and support.
Resource to active inference
0
Active inference is an emerging study field in machine learning and computational neuroscience. This website in particular introduces "active inference institute", which has established a couple of years ago, and contains a wide variety of resources for understanding the theory of active inference and for participating a worldwide active inference community.
Biopython Tutorial
0
The Biopython Tutorial and Cookbook website is a dedicated online resource for users in the field of computational biology and bioinformatics. It provides a collection of tutorials and practical examples focused on using the Biopython library.
The website offers a series of tutorials that cover various aspects of Biopython, catering to users with different levels of expertise. It also includes code snippets and examples, and common solutions to common challenges in computational biology.
Why Mentoring Matters and How to Get Started
0
Describes effective mentorship (both ways).
Info about retiring of R GIS packages rgdal, rgeos, maptools in 2023
0
- Progress on R-spatial evolution, Apr 2023 Update
- Progress on R-spatial evolution, Dec 2022 Update
- R-spatial evolution: retirement of rgdal, rgeos and maptools
- Documentation for Terra
- Documentation for SF
R GIS packages "rgdal", "rgeos", and "maptools" are package set to be archived and no longer supported by end of 2023. Many other R GIS packages are build on top of these packages, including "sp" and "raster". The packages recommended as replacement for "sp" is "sf" and the replacement for "raster" is "terra". Below are links to published articles regarding this transition. Additionally, I am including links to the documentation for the new packages recommended to be used "sf" and "terra".
Neocortex Documentation
0
Neocortex is a new supercomputing cluster at the Pittsburgh Supercomputing Center (PSC) that features groundbreaking AI hardware from Cerebras Systems.
Scikit-Learn: Easy Machine Learning and Modeling
0
Scikit-learn is free software machine learning library for Python. It has a variety of features you can use on data, from linear regression classifiers to xg-boost and random forests. It is very useful when you want to analyze small parts of data quickly.
Setting up PyFR flow solver on clusters
0
These instructions were executed on the FASTER and Grace cluster computing facilities at Texas A&M University. However, the process can be applied to other clusters with similar environments. For local installation, please refer to the PyFR documentation.
Please note that these instructions were valid at the time of writing. Depending on the time you're executing these, the versions of the modules may need to be updated.
1. Loading Modules
The first step involves loading pre-installed software libraries required for PyFR. Execute the following commands in your terminal to load these modules:
module load foss/2022b
module load libffi/3.4.4
module load OpenSSL/1.1.1k
module load METIS/5.1.0
module load HDF5/1.13.1
2. Python Installation from Source
Choose a location for Python 3.11.1 installation, preferably in a .local directory. Navigate to the directory containing the Python 3.11.1 source code. Then configure and install Python:
cd $INSTALL/Python-3.11.1/
./configure --prefix=$LOCAL --enable-shared --with-system-ffi --with-openssl=/sw/eb/sw/OpenSSL/1.1.1k-GCCcore-11.2.0/ PKG_CONFIG_PATH=$LOCAL/pkgconfig LDFLAGS=/usr/lib64/libffi.so.6.0.2
make clean; make -j20; make install;
3. Virtual Environment Setup
A virtual environment allows you to isolate Python packages for this project from others on your system. Create and activate a virtual environment using:
pip3.11 install virtualenv
python3.11 -m venv pyfr-venv
. pyfr-venv/bin/activate
4. Install PyFR Dependencies
Several Python packages are required for PyFR. Install these packages using the following commands:
pip3 install --upgrade pip
pip3 install --no-cache-dir wheel
pip3 install --no-cache-dir botorch pandas matplotlib pyfr
pip3 uninstall -y pyfr
5. Install PyFR from Source
Finally, navigate to the directory containing the PyFR source code, and then install PyFR:
cd /scratch/user/sambit98/github/PyFR/
python3 setup.py develop
Congratulations! You've successfully set up PyFR on the FASTER and Grace cluster computing facilities. You should now be able to use PyFR for your computational fluid dynamics simulations.
The Theory Behind Neural Networks (Very Simplified)
0
This video by the YouTube channel 3Blue1Brown provides a very simplified introduction to the theory behind neural networks. This tutorial is perfect for those that don't have much linear algebra or machine learning background and are eager to step into the realm of ML!
Spatial Data Science in the Cloud (Alpine HPC) using Python
0
Spatial Data Science is a growing field across a wide range of industries and disciplines. The open-source programming language Python has many libraries that support spatial analysis, but what do you do when your computer is unable to tackle the massive file sizes of high-resolution data and the computing power required in your analysis?
There materials have been prepared to teach you spatial data science and how to execute your analysis using a high-performance computer (HPC).
FSL Lectures
0
This is the official University of Oxford FSL group lecture page. This includes information on upcoming and past courses (online and in-person), as well as lecture materials. Available lecture materials includes slides and recordings on using FSL, MR physics, and applications of imaging data.
Creating a Mobile Application
0
Goes through in detail on how to build an application that can run on Android and IOS devices, using Qt Creator to develop Qt Quick applications. Goes through the setting up, creation, configuration, optimization, and overall deployment. This provides the fundamental basis, need to click around on the site for more specifics.
Applications of Machine Learning in Engineering and Parameter Tuning Tutorial
0
Slides for a tutorial on Machine Learning applications in Engineering and parameter tuning given at the RMACC conference 2019.
High Performance Computing (HPC) 101 - Cluster
0
High Performance Computing (HPC) Cluster
Navier-Stokes Cahn-Hilliard (NSCH) for MOOSE Framework
0
The MOOSE Navier-Stokes Cahn-Hilliard (NSCH) application is a library for implementing simulation tools that solve the Navier-Stokes Cahn-Hilliard equations with non-matching densities using Galerkin finite element methods with a residual-based stabilization scheme.
Tutorial for OpenMP Building up and Utilization
0
The following link elaborates the usage of OpenMP API and its related syntax. There are also several exercises available for learners to help them get familiar with this widely-used tool for multi-threaded realization.
Slurm Scheduling Software Documentation
0
Slurm is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small Linux clusters. Slurm requires no kernel modifications for its operation and is relatively self-contained. As a cluster workload manager, Slurm has three key functions. First, it allocates exclusive and/or non-exclusive access to resources (compute nodes) to users for some duration of time so they can perform work. Second, it provides a framework for starting, executing, and monitoring work (normally a parallel job) on the set of allocated nodes. Finally, it arbitrates contention for resources by managing a queue of pending work.
Running Particle-in-Cell Simulations on HPC
0
WarpX is an advanced particle-in-cell code used to model particle accelerators, which needs to be run on HPC. This website contains the tutorial on how to build WarpX on various HPC systems such as NERSC along with examples on how to set up post-processing/visualization tools for different physics cases.
Gesture Classifier Model using MediaPipe
0
MediaPipe is Google's open-source framework for building multimodal (e.g., video, audio, etc.) machine learning pipelines. It is highly efficient and versatile, making it perfect for tasks like gesture recognition.
This is a tutorial on how to make a custom model for gesture recognition tasks based on the Google MediaPipe API. This tutorial is specifically for video-playback, though could be generalized to image and live-video feed recognition.
Building the ArduPilot environment for Linux
0
This article provides instructions for building AirSim, an open-source simulator for autonomous vehicles, on Linux. It outlines the steps to build Unreal Engine, clone and build the AirSim repository, and set up the Unreal environment. It also includes information on how to use AirSim and optional setups such as remote control for manual flight.
Trinity Tutorial for Transcriptome Assembly
0
Trinity is one of the most popular tool to assemble transcripts from RNA-Seq short reads. In this tutorial, we will cover the basic usage of Trinity, best practice and common problems.