Knowledge Base Resources
These resources are contributed by researchers, facilitators, engineers, and HPC admins. Please upvote resources you find useful!
Jetstream Home
0
Jetstream2 makes cutting-edge high-performance computing and software easy to use for your research regardless of your project’s scale—even if you have limited experience with supercomputing systems.Cloud-based and on-demand, the 24/7 system includes discipline-specific apps. You can even create virtual machines that look and feel like your lab workstation or home machine, with thousands of times the computing power.
ACCESS Campus Champion Example Allocation
0
ACCESS requests proposals to be written following NSF proposal guidelines. The link provides an example of an ACCESS proposal using an NSF LaTeX template. The request is at the DISCOVER level appropriate for Campus Champions. The file is 2 pages: the first page details the motivation, approach, and resources requested; and the second page is a 1-page bio.
iOS CoreML + SwiftUI Image Classification Model
0
This tutorial will teach step-by-step how to create an image classification model using Core ML in XCode and integrate it into an iOS app that will use the user's iPhone camera to scan objects and predict based on the image classification model.
Discover Data Science
0
Discover Data Science is all about making connections between prospective students and educational opportunities in an exciting new, hot, and growing field – data science.
Campus Research Computing Consortium (CaRCC)
0
CaRCC – the Campus Research Computing Consortium – is an organization of dedicated professionals developing, advocating for, and advancing campus research computing and data and associated professions.
Vision: CaRCC advances the frontiers of research by improving the effectiveness of research computing and data (RCD) professionals, including their career development and visibility, and their ability to deliver services and resources for researchers. CaRCC connects RCD professionals and organizations around common objectives to increase knowledge sharing and enable continuous innovation in research computing and data capabilities.
Jetstream2 Docs Site
0
Jetstream2 makes cutting-edge high-performance computing and software easy to use for your research regardless of your project’s scale—even if you have limited experience with supercomputing systems.Cloud-based and on-demand, the 24/7 system includes discipline-specific apps. You can even create virtual machines that look and feel like your lab workstation or home machine, with thousands of times the computing power.
Introduction to Linux CLI for Researchers
0
The goal of this video is to help researchers and students recently given allocations to High Performance Compute resources a basic introduction to Linux commands to help them get started. These are a few of the most fundamental commands for navigating and getting started.
If you find this video helpful or would like me to continue this series let me know!
QGIS Processing Executor
0
Running QGIS tools from the command line
Introduction to MP
0
Open Multi-Processing, is an API designed to simplify the integration of parallelism in software development, particularly for applications running on multi-core processors and shared-memory systems. It is an important resource as it goes over what openMP and ways to work with it. It is especially important because it provides a straightforward way to express parallelism in code through pragma directives, making it easier to create parallel regions, parallelize loops, and define critical sections. The key benefit of OpenMP lies in its ease of use, automatic thread management, and portability across various compilers and platforms. For app development, especially in the context of mobile or desktop applications, OpenMP can enhance performance by leveraging the capabilities of modern multi-core processors. By parallelizing computationally intensive tasks, such as image processing, data analysis, or simulations, apps can run faster and more efficiently, providing a smoother user experience and taking full advantage of the available hardware resources. OpenMP's scalability allows apps to adapt to different hardware configurations, making it a valuable tool for developers aiming to optimize their software for a range of devices and platforms.
Vulkan Support Survey across Systems
0
It's not uncommon to see beautiful visualizations in HPC center galleries, but the majority of these are either rendered off the HPC or created using programs that run on OpenGL or custom rasterization techniques. To put it simply the next generation of graphics provided by OpenGL's successor Vulkan is strangely absent in the super computing world. The aim of this survey of available resources is to determine the systems that can support Vulkan workflows and programs. This will assist users in getting past some of the first hurdles in using Vulkan in HPC contexts.
Working with Python on HPC Clusters
0
This tutorial series and documentation covers topics on using Python on HPC clusters. The specific steps are based on the HOPPER cluster at George Mason University in Fairfax, VA. They should be implementable on most HPC clusters that have the SLURM scheduler installed, the Environment Modules system for managing packages and Open onDemand for a web-based GUI to access the cluster resources.
High performance computing 101
0
An introductory guide to High Performance Computing.
Trusted CI
0
The mission of Trusted CI is to lead in the development of an NSF Cybersecurity Ecosystem with the workforce, knowledge, processes, and cyberinfrastructure that enables trustworthy science and NSF’s vision of a nation that is a global leader in research and innovation.
Bridges-2 Home Page
0
Landing Page for Bridges-2 information
What are LSTMs?
0
This reading will explain what a long short-term memory neural network is. LSTMs are a type of neural networks that rely on both past and present data to make decisions about future data. It relies on loops back to previous data to make such decisions. This makes LSTMs very good for predicting time-dependent behavior.
What is fairness in ML?
0
This article discusses the importance of fairness in machine learning and provides insights into how Google approaches fairness in their ML models.
The article covers several key topics:
Introduction to fairness in ML: It provides an overview of why fairness is essential in machine learning systems, the potential biases that can arise, and the impact of biased models on different communities.
Defining fairness: The article discusses various definitions of fairness, including individual fairness, group fairness, and disparate impact. It explains the challenges in achieving fairness due to trade-offs and the need for thoughtful considerations.
Addressing bias in training data: It explores how biases can be present in training data and offers strategies to identify and mitigate these biases. Techniques like data preprocessing, data augmentation, and synthetic data generation are discussed.
Fairness in ML algorithms: The article examines the potential biases that can arise from different machine learning algorithms, such as classification and recommendation systems. It highlights the importance of evaluating and monitoring models for fairness throughout their lifecycle.
Fairness tools and resources: It showcases various tools and resources available to practitioners and developers to help measure, understand, and mitigate bias in machine learning models. Google's TensorFlow Extended (TFX) and What-If Tool are mentioned as examples.
Google's approach to fairness: The article highlights Google's commitment to fairness and the steps they take to address fairness challenges in their ML models. It mentions the use of fairness indicators, ongoing research, and partnerships to advance fairness in AI.
Overall, the article provides a comprehensive overview of fairness in machine learning and offers insights into Google's approach to building fair ML models.
Metadata Systems
0
Metadata is a vital topic in libraries and librarianship, encompassing structured information used for accessing digital resources. The definition of metadata varies but is essentially data about data. It has evolved beyond simply describing metadata schemas and now focuses on topics like interoperability, non-descriptive metadata (administrative and preservation metadata), and the effective application of metadata schemas for user discovery. Interoperability, the ability to seamlessly exchange metadata between systems, is a major concern. Different levels of interoperability are examined, including schema-level, record-level, and repository-level. Challenges to interoperability include variations in standards, collaboration barriers, and costs.Metadata management is discussed in terms of the holistic management of metadata across an entire library. Steps include analyzing metadata requirements, adopting schema, creating metadata content, delivery/access, evaluation, and maintenance. Administrative metadata, which encompasses ownership and production information, is becoming more critical, particularly for electronic resource licensing. Preservation metadata is also gaining importance in ensuring the long-term viability of digital objects.
phenoACCESS-24 workshop program materials
0
phenoACCESS-24: Workshop on Research Computing and Plant Phenotyping
High-throughput plant phenotyping is computationally intensive, requiring data storage, data processing and analysis, research computing expertise, and mechanisms for data sharing. This workshop is aimed at research computing workforce development by addressing questions such as what is plant phenotyping; what types of data are collected; what are the preprocessing and analytical needs; what tools and platforms exist for data capture, management, analysis, and storage; and how best to collaborate and engage with phenotyping researchers. The full-day agenda will include speakers (scientists and research compute staff); panel discussions (how to work with research computing staff and facilities; how to engage with phenotyping scientists), and networking opportunities (meet-and-greet, ice breakers, small group discussions). The videos and slide decks for the talks are included on the linked page.
Docker Tutorial for Beginners
0
A Docker tutorial for beginners is a course that teaches the basics of Docker, a containerization platform that allows you to package your application and its dependencies into a standardized unit for development, shipment, and deployment.
Thrust resources
0
Thrust is a CUDA library that optimizes parallelization on the GPU for you. The Thrust tutorial is great for beginners. The documentation is helpful for anyone using Thrust.
Conda
0
Conda is a popular package management system. This tutorial introduces you to Conda and walks you through managing Python, your environment, and packages.
Machine Learning in R online book
0
The free online book for the mlr3 machine learning framework for R. Gives a comprehensive overview of the package and ecosystem, suitable from beginners to experts. You'll learn how to build and evaluate machine learning models, build complex machine learning pipelines, tune their performance automatically, and explain how machine learning models arrive at their predictions.
The Use of High-Performance Computing Services in University Settings: A Usability Case Study of the University of Cincinnati’s High-Performance Computing Cluster
0
This presentation gives a detailed breakdown of the outcome of my master's thesis which was focused on making HPC Clusters accessible across all disciplines in a university setting "Our Case Study was the university of Cincinnati".
Astronomy data analysis with astropy
0
Astropy is a community-driven package that offers core functionalities needed for astrophysical computations and data analysis. From coordinate transformations to time and date handling, unit conversions, and cosmological calculations, Astropy ensures that astronomers can focus on their research without getting bogged down by the intricacies of programming. This guide walks you through practical usage of astropy from CCD data reduction to computing galactic orbits of stars.