Knowledge Base Resources
Contributed by cyberinfrastructure professionals (researchers, research computing facilitators, research software engineers and HPC system administrators), these resources are shared through the ConnectCI community platform. Add resources you find helpful!
HPC Carpentry
1
An HPC focused Carpentry community. Trainings include: HPC fundamentals, python, chapel, LAMMPS, parallelization with python, scaling studies, etc.
PyTorch for Deep Learning and Natural Language Processing
1
PyTorch is a Python library that supports accelerated GPU processing for Machine Learning and Deep Learning. In this tutorial, I will teach the basics of PyTorch from scratch. I will then explore how to use it for some ML projects such as Neural Networks, Multi-layer perceptrons (MLPs), Sentiment analysis with RNN, and Image Classification with CNN.
Tutorial: Localized RAG Chatbot with ACCESS HPC
1
This tutorial shows how to set up an open-source customizable RAG chatbot to answer questions about documents you can choose. It uses Indiana's Jetstream 2 HPC, but should work on any major ACCESS HPC.
Examples of code using JSON nlohmann header only Library for C++
0
This code showcases how to work with the header-only nlohmann JSON library for C++. In order to compile, change the extensions from json_test.txt to json_test.cpp and test.txt to test.json. You must also download the header files from https://github.com/nlohmann/json. Complilation instructions are at the bottom of json_test. This code is very helpful for creating config files, for example.
Gaussian 16
0
Gaussian 16 is a computational chemistry package that is used in predicting molecular properties and understanding molecular behavior at a quantum mechanical level.
AHPCC documentary
0
This link is a documentary website to use AHPCC.
ACCESS KB Guide - DELTA
0
NCSA is the home of Delta, a computing and data resource that balances cutting-edge graphics processor and CPU architectures with a non-POSIX file system with a POSIX-like interface. Delta allows applications to reap the benefits of modern file systems without rewriting code.
Official Documentation of VisIt
0
VisIt is a prominent open-source, interactive parallel visualization and graphical analysis tool predominantly used for viewing scientific data. Its GitHub repository offers a detailed insight into the software's source code, documentation, and contribution guidelines. In particular, it offers useful examples on how it
Displaying Scientific Data with Tableau
0
Tableau is a popular and capable software product for creating charts that present data and dashboards that allow you to explore data. It is typically used to present business or statistical data, but can also create compelling visualizations of scientific data. However, scientific data is often generated or stored in formats that are not immediately accessible by Tableau. This seminar will explore the data formats that work best with Tableau and the available mechanisms for generating scientific data in (or converting it to) those formats so that you can apply the full power of Tableau to create the best possible visualizations of your data.
Open Storage Network
0
The Open Storage Network, a national resource available through the XSEDE resource allocation system, is high quality, sustainable, distributed storage cloud for the research community.
Introduction to Vizualization on HPC Using Python
0
This workshop has an introduction to the concepts of visualization followed by hands on exercises. The concepts section has Speaker Notes, and the hands on section has an accompanying Jupyter notebook.
The workshop is one in a series of Introduction to HPC
Advanced Mathematical Optimization Techniques
0
Mathematical optimization deals with the problem of finding numerically minimums or maximums of a functions. This tutorial provides the Python solutions for the optimization problems with examples.
Educause HEISC-800-171 Community Group
0
The purpose of this group is to provide a forum to discuss NIST 800-171 compliance. Participants are encouraged to collaborate and share effective practices and resources that help higher education institutions prepare for and comply with the NIST 800-171 standard as it relates to Federal Student Aid (FSA), CMMC, DFARS, NIH, and NSF activities.
ACCESS - Video for new ACCESS users
0
This is a short video on how to exchange ACCESS credits and connect to Jetstream 2 (please note this was created for Duke users but applies to all) .
File management of Visual Studio Code on clusters
0
Visual Studio Code, commonly known as VSCode, is a popular tool used by programmers worldwide. It serves as a text editor and an Integrated Development Environment (IDE) that supports a wide variety of programming languages. One of its key features is its extensive library of extensions. These extensions add on to the basic functionalities of VSCode, making coding more efficient and convenient.
However, there's a catch. When these extensions are installed and used frequently, they generate a multitude of files. These files are typically stored in a folder named .vscode-extension within your home directory. On a cluster computing facility such as the FASTER and Grace clusters at Texas A&M University, there's a limitation on how many files you can have in your home directory. For instance, the file number limit could be 10000, while the .vscode-extension directory can hold around 4000 temporary files even with just a few extensions. Thus, if the number of files in your home directory surpasses this limit due to VSCode extensions, you might face some issues. This restriction can discourage users from taking full advantage of the extensive features and extensions offered by the VSCode editor.
To overcome this, we can shift the .vscode-extension directory to the scratch space. The scratch space is another area in the cluster where you can store files and it usually has a much higher limit on the number of files compared to the home directory. We can perform this shift smoothly using a feature called symbolic links (or symlinks for short). Think of a symlink as a shortcut or a reference that points to another file or directory located somewhere else.
Here's a step-by-step guide on how to move the .vscode-extension directory to the scratch space and create a symbolic link to it in your home directory:
1. Copy the .vscode-extension directory to the scratch space: Using the cp command, you can copy the .vscode-extension directory (along with all its contents) to the scratch space. Here's how:
cp -r ~/.vscode-extension /scratch/user
Don't forget to replace /scratch/user with the actual path to your scratch directory.
2. Remove the original .vscode-extension directory: Once you've confirmed that the directory has been copied successfully to the scratch space, you can remove the original directory from your home space. You can do this using the rm command:
rm -r ~/.vscode-extension
It's important to make sure that the directory has been copied to the scratch space successfully before deleting the original.
3. Create a symbolic link in the home directory: Lastly, you'll create a symbolic link in your home directory that points to the .vscode-extension directory in the scratch space. You can do this as follows:
ln -s /scratch/user/.vscode-extension ~/.vscode-extension
By following this process, all the files generated by VSCode extensions will be stored in the scratch space. This prevents your home directory from exceeding its file limit. Now, when you access ~/.vscode-extension, the system will automatically redirect you to the directory in the scratch space, thanks to the symlink. This method ensures that you can use VSCode and its various extensions without worrying about hitting the file limit in your home directory.
Online Master's in Business Analytics Program Guide - TechGuide
0
A degree in business analytics looks different in today’s world than it did a decade ago. In its most current application, business analytics uses modern data science and capabilities in machine learning (ML). The magic comes into play when these are leveraged for strategic planning.
Docker Container Library
0
The Docker container library, commonly known as Docker Hub, is a vast repository that hosts a multitude of pre-configured container images, streamlining the deployment process. It can drastically speed up a workflow, and gives you a consistent starting point each time. Check it out, they might have exactly what you are looking for!
GIS: What is a Geodetic Datums?
0
Often when working with GIS, or spatial data, one encounters the word "datum" and it may require that you choose a "datum" when doing GIS computation tasks. Below is a short video on what are datums from NOAA and UCAR.
Why Mentoring Matters and How to Get Started
0
Describes effective mentorship (both ways).
PyTorch Introduction
0
This is a very barebones introduction to the PyTorch framework used to implement machine learning. This tutorial implements a feed-forward neural network and is taught completely asynchronously through Stanford University. A good start after learning the theory behind feed-forward neural networks.
Framework to help in scaling Machine Learning/Deep Learning/AI/NLP Models to Web Application level
0
This framework will help in scaling Machine Learning/Deep Learning/Artificial Intelligence/Natural Language Processing Models to Web Application level almost without any time.
Practical Machine Learning with Python
0
This video series provides a holistic understanding of machine learning, covering theory, application, and inner workings of supervised, unsupervised, and deep learning algorithms. It covers topics such as linear regression, K Nearest Neighbors, Support Vector Machines (SVM), flat clustering, hierarchical clustering, and neural networks. Goes over the high level intuitions of the algorithms and how they are logically meant to work. Apply the algorithms in code using real world data sets along with a module, such as with Scikit-Learn.
Representation Learning in Deep Learning
0
Representation learning is a fundamental concept in machine learning and artificial intelligence, particularly in the field of deep learning. At its core, representation learning involves the process of transforming raw data into a form that is more suitable for a specific task or learning objective. This transformation aims to extract meaningful and informative features or representations from the data, which can then be used for various tasks like classification, clustering, regression, and more.
Quick and Robust Data Augmentation with Albumentations Library
0
Data augmentation is a crucial step in the pipeline for image classification with deep learning. Albumentations is an extremely versatile Python library that can be used to easily augment images. Transformations include rotations, flips, downscaling, distortions, blurs, and many more.
Citation:
Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. Albumentations: Fast and Flexible Image Augmentations. Information. 2020; 11(2):125. https://doi.org/10.3390/info11020125
marimo | a next generation python notebook
0
Introduction seminar for new reactive python notebook from marimo ambassador.